跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 11:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊杰
研究生(外文):Chun-Chieh Lin
論文名稱:應用智慧型計算在12導程心電圖於心臟疾病之辨識
論文名稱(外文):Cardiac Disease Classification with Clinical 12-Lead ECG by Using Computational Intelligence Approach
指導教授:張百棧張百棧引用關係
指導教授(外文):Pei-Chann Chang
學位類別:博士
校院名稱:元智大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:62
中文關鍵詞:12導程心電圖心臟疾病心房顫動心肌梗塞盲訊號分離隱藏馬可夫模型主成分分析多項式近似法特徵選取
外文關鍵詞:12-Lead ECGCardiac DiseaseAtrial FibrillationMyocardial InfarctionBlind Source SeparationHidden Markov ModelsPrincipal Component AnalysisPolynomial ApproximationFeature Extraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:407
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
在臨床病例醫學中,心電圖在心肺相關疾病上為一最為廣泛應用的非侵入式診斷工具。心電圖監測病人的心跳狀況,並對於心房與心室的活動給予精準且重要的資訊。在處理並瞭解心電圖波形的過程,關鍵在於其在時間上形態轉換之處理。臨床上,12導程心電圖在多數的醫院中均已有所應用,其對於心臟疾病提供了更多詳盡的波形資料。本研究將著重於利用不同的智慧型技術,透過分析12導程心電圖之形態,從中擷取心電訊號之特徵,並藉以判定該病例所可能之疾病。本研究中,使用心房顫動及心肌梗塞做為本研究之判定病例。於心房顫動病例中,本研究使用盲訊號分離技術,從12導程心電圖中分離出可能之顫動訊號,並將其視為用以判別病例之特徵;於心肌梗塞病例中,本研究則使用隱藏式馬可夫模型計算在不同導程中,該心跳波形可能之發生機率,本研究並使用主成份分析及多項式近似法擷取ST片段中之特徵資訊。此三類數學模型均使用於12 導程心電圖中計算出可用於判斷心肌梗塞之特徵選取,其中主成分分析對於單一心跳之診斷率較高而多項式近似法則對於病例之診斷較為有效。

In clinical medicine, Electrocardiogram (ECG) is one of the most widely used non-invasive diagnostic tools for cardiopulmonary diseases. ECG monitors the patients’ heart-beat and clinically gives accurate and important information about the activities of atrium and ventricle. The key in treating ECG complex is using the morphology in time detection. Clinical 12-lead ECG data is now available in most hospitals and it includes more detailed information about cardiac disease. This research focuses on how to extract the features in ECG data by analyzing the morphological characteristics through different approaches. Atrial Fibrillation (AF) and Myocardial Infarction (MI) are used to verify the applied computational intelligence approaches. For AF classification, Blind Source Separation (BSS) is adopted to separate the estimated fibrillation sources from 12-lead ECG. The extracted sources can be regarded as the features of AF and used to classify the input cases. Second, for MI classification, three mathematical models are applied to calculate the feature vector of MI cases. Hidden Markov Models (HMMs) are used to calculate the likelihood value for each lead; Principal Component Analysis (PCA) is adopted to find the main components of ST segment and polynomial approximation is applied to calculate the coefficients of fitted polynomial formula of ST segment. The calculated coefficients can be used as input feature vector for classifier. In experimental result with SVM classifier, PCA is better for beat classification while polynomial approximation can give the higher accuracy for case classification.

書名頁 i
論文口試委員審定書 ii
授權書 iv
中文摘要 v
英文摘要 vi
誌謝 viii
Table of Contents ix
List of Tables xi
List of Figures xii
1. Introduction 1
1.1. Atrial Fibrillation (AF) 4
1.2. Myocardial Infarction (MI) 5
1.3. Performance Measurement 7
2. Related Research 8
2.1. Wavelet Transformation (WT) to Analysis ECG Characteristics 8
2.2. Morphological Transform to Extract P-wave in ECG Complex 9
2.3. ECG Feature Extraction by Principle Component Analysis (PCA) 9
2.4. ST Shape Change Classification by Polynomial Approximation 10
2.5. Independent Component Analysis (ICA) for 12-Lead ECG Sources Separation 11
2.6. ECG Complex Segmentation by Hidden Markov Models (HMMs) 12
2.7. Empirical Mode Decomposition (EMD) for Atrial Fibrillation Classification 13
2.8. Non-Linear Classifier for ECG Analysis 15
3. Methodology 22
3.1. Atrial Fibrillation Classification in 12-Lead ECG 22
3.1.1. Independent Component Analysis (ICA) 23
3.1.2. Second-Order Blind Identification (SOBI) 26
3.1.3. Power Spectral Density (PSD) Based Classification 27
3.1.4. Ensemble Empirical Mode Decomposition (EEMD) 29
3.2. Myocardial Infarction Classification in 12-Lead ECG with Whole Complex 32
3.2.1. ECG Beat Sampling 33
3.2.2. Feature Extraction: Using HMMs for Each Lead V1 to V4 34
3.2.3. Data Classification 37
3.3. Myocardial Infarction Classification in 12-Lead ECG with ST-segment 39
3.3.1. ECG signal pre-processing 40
3.3.1.1 QRS-wave location 40
3.3.1.2 ST-Segmentation 41
3.3.2. Feature Extraction Stage 42
3.3.2.1 Principal Component Analysis 42
3.3.2.2 Polynomial Approximation 43
4. Experimental Results 45
4.1. Performance Measurement for AF Classification 45
4.2. Performance Measurement for MI Classification with Whole ECG by HMM 46
4.3. Performance Measurement for MI Classification with Principal Component Analysis and Polynomial Approximation 47
5. Discussion 50
6. Conclusion 54
Reference 55
Vita 62

[1]A. T. Reisner, G. D. Clifford and R. G. Mark, "The Physiological Basis of the Electrocardiogram," in Advanced Methods and Tools for ECG Data Analysis, ed: Artech House Norwood, MA, 2006, pp. 1-25.
[2]P. Trahanias and E. Skordalakis, "Syntactic pattern recognition of the ECG," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 648-657, 1990.
[3]N. Maglaveras, T. Stamkopoulos, K. Diamantaras, C. Pappas and M. Strintzis, "ECG pattern recognition and classification using non-linear transformations and neural networks: A review," International Journal of Medical Informatics, vol. 52, pp. 191-208, 1998.
[4]A. Gacek and W. Pedrycz, "A genetic segmentation of ECG signals," IEEE Transactions on Biomedical Engineering, vol. 50, pp. 1203-1208, 2003.
[5]M. P. S. Chawla, H. K. Verma and V. Kumar, "Artifacts and noise removal in electrocardiograms using independent component analysis," International Journal of Cardiology, vol. 129, pp. 278-281, 2008.
[6]T. Stamkopoulos, K. Diamantaras, N. Maglaveras and M. Strintzis, "ECG analysis using nonlinear PCA neural networks for ischemia detection," IEEE Transactions on Signal Processing, vol. 46, pp. 3058-3067, 1998.
[7]T. B. Garcia and N. Holtz, Introduction to 12-Lead ECG: The Art of Interpretation: Jones and Bartlett, 2001.
[8]S. M. Salerno, P. C. Alguire and H. S. Waxman, "Competency in Interpretation of 12-Lead Electrocardiograms: A Summary and Appraisal of Published Evidence," Annals of Internal Medicine, vol. 138, pp. 751-760, 2003.
[9]S. M. Salerno, P. C. Alguire and H. S. Waxman, "Training and Competency Evaluation for Interpretation of 12-Lead Electrocardiograms: Recommendations from the American College of Physicians," Annals of Internal Medicine, vol. 138, pp. 747-750, 2003.
[10]J. L. Willems, C. Abreu-Lima, P. Arnaud, J. H. Van Bemmel, C. Brohet, R. Degani, B. Denis, J. Gehring, I. Graham, G. Van Herpen, H. Machado, P. W. Macfarlane, J. Michaelis, S. D. Moulopoulos, P. Rubel, and C. Zywietz, "The diagnostic performance of computer programs for the interpretation of electrocardiograms," New England Journal of Medicine, vol. 325, pp. 1767-1773, 1991.
[11]K. Poon, P. M. Okin and P. Kligfield, "Diagnostic performance of a computer-based ECG rhythm algorithm," Journal of Electrocardiology, vol. 38, pp. 235-238, 2005.
[12]R. Bousseljot, D. Kreiseler and A. Schnabel, "Nutzung der EKG-Signal-datenbank CARDIODAT der PTB Ober uber das Internet," Biomedizinische Technik, vol. 40, pp. 317-318, 1995.
[13]D. Kreiseler and R. Bousseljot, "Automatisierte EKG Auswertung mit Hilfe der EKG-Signaldatenbank CARDIODAT der PTB," Biomedizinische Technik, vol. 40, pp. 319-320, 1995.
[14]Y. J. Lin, Y. B. Liu and C. C. Chu, "Incremental changes in QRS duration predict mortality in patients with atrial fibrillation," PACE - Pacing and Clinical Electrophysiology, vol. 32, pp. 1388-1394, 2009.
[15]S. A. Hunt, D. W. Baker, M. H. Chin, M. P. Cinquegrani, A. M. Feldman, G. S. Francis, T. G. Ganiats, S. Goldstein, G. Gregoratos, M. L. Jessup, R. J. Noble, M. Packer, M. A. Silver, L. W. Stevenson, R. J. Gibbons, E. M. Antman, J. S. Alpert, D. P. Faxon, V. Fuster, A. K. Jacobs, L. F. Hiratzka, R. O. Russell, and S. C. Smith Jr, "ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: Executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure)," Journal of the American College of Cardiology, vol. 38, pp. 2101-2113, 2001.
[16]J. Mant, D. A. Fitzmaurice, F. D. R. Hobbs, S. Jowett, E. T. Murray, R. Holder, M. Davies, and G. Y. H. Lip, "Accuracy of diagnosing atrial fibrillation on electrocardiogram by primary care practitioners and interpretative diagnostic software: Analysis of data from screening for atrial fibrillation in the elderly (SAFE) trial," British Medical Journal, vol. 335, pp. 380-382, 2007.
[17]R. Alcaraz and J. J. Rieta, "A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms," Biomedical Signal Processing and Control, 2009.
[18]V. Fuster, L. E. Ryden, D. S. Cannom, H. J. Crijns, A. B. Curtis, K. A. Ellenbogen, J. L. Halperin, J. Y. Le Heuzey, G. N. Kay, J. E. Lowe, S. B. Olsson, E. N. Prystowsky, J. L. Tamargo, S. Wann, S. C. Smith Jr, A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, S. A. Hunt, R. Nishimura, J. P. Ornato, R. L. Page, B. Riegel, S. G. Priori, J. J. Blanc, A. Budaj, A. J. Camm, V. Dean, J. W. Deckers, C. Despres, K. Dickstein, J. Lekakis, K. McGregor, M. Metra, J. Morais, A. Osterspey, and J. L. Zamorano, "ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for practice guidelines (Writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation)," Circulation, vol. 114, pp. e257-e354, 2006.
[19]"2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care," Circulation., vol. 112, pp. IV1-203, 2005.
[20]F. Jager, G. B. Moody, A. Taddei and R. G. Mark, "Performance measures for algorithms to detect transient ischemic ST segment changes," in Computers in Cardiology, pp. 369-372, 1992.
[21]S. Kara and M. Okandan, "Atrial fibrillation classification with artificial neural networks," Pattern Recognition, vol. 40, pp. 2967-2973, 2007.
[22]O. Rioul and M. Vetterli, "Wavelets and signal processing," IEEE Signal Processing Magazine, vol. 8, pp. 14-38, 1991.
[23]M. Unser and A. Aldroubi, "A review of wavelets in biomedical applications," Proceedings of the IEEE, vol. 84, pp. 626-638, 1996.
[24]P. S. Addison, J. N. Watson, G. R. Clegg, P. A. Steen and C. E. Robertson, "Finding coordinated atrial activity during ventricular fibrillation using wavelet decomposition," IEEE Engineering in Medicine and Biology Magazine, vol. 21, pp. 58-61+65, 2002.
[25]C. Li, C. Zheng and C. Tai, "Detection of ECG characteristic points using wavelet transforms," IEEE Transactions on Biomedical Engineering, vol. 42, pp. 21-28, 1995.
[26]A. Diery, D. Rowlands, T. R. H. Cutmore and D. James, "Automated ECG diagnostic P-wave analysis using wavelets," Computer Methods and Programs in Biomedicine, Article in Press, 2010.
[27]Y. Sun, K. L. Chan and S. M. Krishnan, "Characteristic wave detection in ECG signal using morphological transform," BMC Cardiovascular Disorders, vol. 5, art. no. 28, 2005.
[28]J. Carlson, R. Johansson and S. B. Olsson, "Classification of electrocardiographic P-wave morphology," IEEE Transactions on Biomedical Engineering, vol. 48, pp. 401-405, 2001.
[29]T. Yamane, D. C. Shah, J. T. Peng, P. Jas, M. Hocini, I. Deisenhofer, K. J. Choi, L. Macle, J. Clementy, and M. Hassaguerre, "Morphological characteristics of P waves during selective pulmonary vein pacing," Journal of the American College of Cardiology, vol. 38, pp. 1505-1510, 2001.
[30]M. P. S. Chawla, "PCA and ICA processing methods for removal of artifacts and noise in electrocardiograms: A survey and comparison," Applied Soft Computing Journal, Article in Press, 2010.
[31]F. Castells, P. Laguna, L. Sornmo, A. Bollmann and J. M. Roig, "Principal component analysis in ECG signal processing," Eurasip Journal on Advances in Signal Processing, art. no.: 74580, 2007.
[32]R. Ceylan and Y. Ozbay, "Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network," Expert Systems with Applications, vol. 33, pp. 286-295, 2007.
[33]D. Ge, L. Sun, J. Zhou and Y. Shao, "Discrimination of myocardial infarction stages by subjective feature extraction," Computer Methods and Programs in Biomedicine, vol. 95, pp. 270-279, 2009.
[34]Z. Shen, C. Hu, J. Liao and M. Q. H. Meng, "An algorithm of ST segment classification and detection," in 2010 IEEE International Conference on Automation and Logistics, pp. 559-564, 2010.
[35]G. Y. Jeong, K. H. Yu and N. G. Kim, "A polynomial approximation approach for analyzing ST shape change," in Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 4034-4037, 2005.
[36]G. Y. Jeong, K. H. Yu, M. J. Yoon and E. Inooka, "ST shape classification in ECG by constructing reference ST set," Medical Engineering and Physics, vol. 32, pp. 1025-1031, 2010.
[37]J. J. Rieta, V. Zarzoso, J. Millet-Roig, R. Garcia-Civera and R. Ruiz-Granell, "Atrial activity extraction based on blind source separation as an alternative to QRST cancellation for atrial fibrillation analysis," in Computers in Cardiology, pp. 69-72, 2000.
[38]P. Comon, "Independent component analysis, A new concept?," Signal Processing, vol. 36, pp. 287-314, 1994.
[39]A. Hyvarinen and E. Oja, "Independent component analysis: Algorithms and applications," Neural Networks, vol. 13, pp. 411-430, 2000.
[40]L. R. Rabiner and B.-H. Juang, "Introduction to Hidden Markov models," IEEE ASSP magazine, vol. 3, pp. 4-16, 1986.
[41]L. R. Rabiner, "Tutorial on hidden Markov models and selected applications in speech recognition," Proceedings of the IEEE, vol. 77, pp. 257-286, 1989.
[42]R. V. Andreao, B. Dorizzi and J. Boudy, "ECG signal analysis through hidden Markov models," IEEE Transactions on Biomedical Engineering, vol. 53, pp. 1541-1549, 2006.
[43]D. A. Coast, R. M. Stern, G. G. Cano and S. A. Briller, "An approach to cardiac arrhythmia analysis using hidden Markov models," IEEE Transactions on Biomedical Engineering, vol. 37, pp. 826-836, 1990.
[44]S. Graja and J. M. Boucher, "Hidden Markov tree model applied to ECG delineation," IEEE Transactions on Instrumentation and Measurement, vol. 54, pp. 2163-2168, 2005.
[45]R. V. Andreao, B. Dorizzi, J. Boudy and J. C. M. Mota, "ST-segment analysis using hidden Markov model beat segmentation: Application to ischemia detection," in Computers in Cardiology, pp. 381-384, 2004.
[46]S. Krimi, K. Ouni and N. Ellouze, "An approach combining Wavelet Transform and Hidden Markov Models for ECG segmentation," in 2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications, ICTTA 2008.
[47]N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Snin, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903-995, 1998.
[48]Z. Huang, Y. Chen and M. Pan, "Time-frequency characterization of atrial fibrillation from surface ECG based on Hilbert-Huang transform," Journal of Medical Engineering and Technology, vol. 31, pp. 381-389, 2007.
[49]S. L. Lin, P. C. Tung and N. E. Huang, "Data analysis using a combination of independent component analysis and empirical mode decomposition," Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 79, art. no. 066705, 2009.
[50]I. Guler and E. D. Ubeyli, "ECG beat classifier designed by combined neural network model," Pattern Recognition, vol. 38, pp. 199-208, 2005.
[51]C. Papaloukas, D. I. Fotiadis, A. Likas and L. K. Michalis, "An ischemia detection method based on artificial neural networks," Artificial Intelligence in Medicine, vol. 24, pp. 167-178, 2002.
[52]B. Heden, H. Ohlin, R. Rittner and L. Edenbrandt, "Acute myocardial infarction detected in the 12-lead ECG by artificial neural networks," Circulation, vol. 96, pp. 1798-1802, 1997.
[53]H. Atoui, J. Fayn and P. Rubel, "A novel neural-network model for deriving standard 12-lead ECGs from serial three-lead ECGs: Application to self-care," IEEE Transactions on Information Technology in Biomedicine, vol. 14, pp. 883-890, 2010.
[54]K. R. Muller, S. Mika, G. Ratsch, K. Tsuda and B. Scholkopf, "An introduction to kernel-based learning algorithms," IEEE Transactions on Neural Networks, vol. 12, pp. 181-201, 2001.
[55]H. Jiawei and K. Micheline, Data Mining: Concepts and Techniques 2nd ed. San Francisco, CA: Morgan Kaufmann Publishers Inc, 2001.
[56]S. S. Mehta and N. S. Lingayat, "Application of support vector machine for the detection of P- and T-waves in 12-lead electrocardiogram," Computer Methods and Programs in Biomedicine, vol. 93, pp. 46-60, 2009.
[57]M. Stridh and L. Sornmo, "Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation," IEEE Transactions on Biomedical Engineering, vol. 48, pp. 105-111, 2001.
[58]P. S. Hamilton and W. J. Tompkins, "Compression of the ambulatory ECG by average beat subtraction and residual differencing," IEEE Transactions on Biomedical Engineering, vol. 38, pp. 253-259, 1991.
[59]F. Castells, J. J. Rieta, J. Millet and V. Zarzoso, "Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias," IEEE Transactions on Biomedical Engineering, vol. 52, pp. 258-267, 2005.
[60]M. G. Tsipouras, D. I. Fotiadis and D. Sideris, "An arrhythmia classification system based on the RR-interval signal," Artificial Intelligence in Medicine, vol. 33, pp. 237-250, 2005.
[61]P. Langley, J. P. Bourke and A. Murray, "Frequency analysis of atrial fibrillation," in Computers in Cardiology, pp. 65-68, 2000.
[62]A. Bollmann, D. Husser, L. Mainardi, F. Lombardi, P. Langley, A. Murray, J. J. Rieta, J. Millet, S. B. Olsson, M. Stridh, and L. Sornmo, "Analysis of surface electrocardiograms in atrial fibrillation: Techniques, research, and clinical applications," Europace, vol. 8, pp. 911-926, 2006.
[63]J. J. Rieta, F. Castells, C. Sanchez, V. Zarzoso and J. Millet, "Atrial activity extraction for atrial fibrillation analysis using blind source separation," IEEE Transactions on Biomedical Engineering, vol. 51, pp. 1176-1186, 2004.
[64]N. V. Thakor and Y. S. Zhu, "Applications of adaptive filtering to ECG analysis: Noise cancellation and arrhythmia detection," IEEE Transactions on Biomedical Engineering, vol. 38, pp. 785-794, 1991.
[65]A. Belouchrani, K. Abed-Meraim, J. F. Cardoso and E. Moulines, "A blind source separation technique using second-order statistics," IEEE Transactions on Signal Processing, vol. 45, pp. 434-444, 1997.
[66]R. Llinares and J. Igual, "Application of constrained independent component analysis algorithms in electrocardiogram arrhythmias," Artificial Intelligence in Medicine, vol. 47, pp. 121-133, 2009.
[67]A. W. J. Van ''T Hof, A. Liem, M. J. De Boer and F. Zijlstra, "Clinical value of 12-lead electrocardiogram after successful reperfusion therapy for acute myocardial infarction," Lancet, vol. 350, pp. 615-619, 1997.
[68]P. A. van der Vleuten, M. Vogelzang, T. Svilaas, I. C. C. van der Horst, R. A. Tio, and F. Zijlstra, "Predictive value of Q waves on the 12-lead electrocardiogram after reperfusion therapy for ST elevation myocardial infarction," Journal of Electrocardiology, vol. 42, pp. 310-318, 2009.
[69]C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining and Knowledge Discovery, vol. 2, pp. 121-167, 1998.
[70]B. M. Asl, S. K. Setarehdan and M. Mohebbi, "Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal," Artificial Intelligence in Medicine, vol. 44, pp. 51-64, 2008.
[71]M. H. Song, J. Lee, S. P. Cho, K. J. Lee and S. K. Yoo, "Support vector machine based arrhythmia classification using reduced features," International Journal of Control, Automation and Systems, vol. 3, pp. 571-579, 2005.
[72]K. K. Sung and T. Poggio, "Example-based learning for view-based human face detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 39-51, 1998.
[73]R. J. Povinelli, "Towards the prediction of transient ST changes," in Computers in Cardiology, pp. 663-666, 2005.
[74]K. Murphy, (2005). Hidden Markov Model (HMM) Toolbox for Matlab. Available: http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
[75]M. P. S. Chawla, H. K. Verma and V. Kumar, "A new statistical PCA-ICA algorithm for location of R-peaks in ECG," International Journal of Cardiology, vol. 129, pp. 146-148, 2008.
[76]A. Muhammad, I. A. Malagore and F. A. Afsar, "Automatic detection and localization of myocardial infarction using back propagation neural networks," in 2010 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010, art.no. 5514664, 2010.
[77]H. L. Lu, K. Ong and P. Chia, "An Automated ECG classification system based on a neuro-fuzzy system," in Computers in Cardiology, pp. 387-390, 2000.
[78]R. J. Martis, C. Chakraborty and A. K. Ray, "A two-stage mechanism for registration and classification of ECG using Gaussian mixture model," Pattern Recognition, vol. 42, pp. 2979-2988, 2009.
[79]P. C. Chang, J. C. Hsieh, J. J. Lin, Y. H. Chou and C. H. Liu, "A Hybrid System with Hidden Markov Models and Gaussian Mixture Models for Myocardial Infarction Classification with 12-Lead ECGs," in 2009 11th IEEE International Conference on High Performance Computing and Communications, HPCC 2009, Seoul, pp. 110-116, 2009.
[80]S. N. Yu and Y. H. Chen, "Noise-tolerant electrocardiogram beat classification based on higher order statistics of subband components," Artificial Intelligence in Medicine, vol. 46, pp. 165-178, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 呂玉琴(1996)。國小教師的分數知識。臺北師院學報,9,427-460。
2. 李歐梵:〈中國現代小說的先驅者──施蟄存、穆時英、劉吶鷗作品簡介〉,《聯合文學》,3:12(1987.10),頁8-14。
3. 呂玉琴(1991b)國小學生的分數概念:1/2V.S.2/4。國民教育,31(11,12):10-15。
4. 王健:〈黃金枷鎖桎梏的兩條女性生命──曹七巧與蟬阿姨形象評析〉,《國文天地》,15:9(2000.02),頁53-57。
5. 謝孟穎(2003)。家長社經背景與學生學業成就關連性之研究。教育研究集刊,49(2),1-31。
6. 許榮富(1991)。國中物理教學評量多元性及多重性設計的構念。教師天地,54,26,31。
7. 林福來、黃敏晃(1993)。分數啟蒙課程的分析、批判與辯證。科學教育學刊,1(1):1-27。
8. 郭詩詠:〈論施蟄存小說『技術化視覺性』與心理分析之關係〉,《電影欣賞季刊》,20:4(2002)年,頁18-29。
9. 郭詩詠:〈建構潛意識的內在空間:論施蟄存《將軍底頭》的「內在性」問題〉,《中山人文學報》,14(2002.04),頁125-145。
10. 許秦蓁:〈租界區與殖民地──新感覺作家筆下的城/鄉〉,《育達研究叢刊》,1(2000.10),頁121-132。
11. 彭小妍:〈性啟蒙與自我的解放──「性博士」張競生與五四的色慾小說〉,《當代》,76(1992.08月),頁32-49。
12. 彭小妍:〈五四的「新性道德」──女性情慾論述與建構民族國家〉,《近代中國婦女史研究》,3(1995.08),頁77-96。
13. 彭小妍:〈「新女性」與上海都市文化──新感覺派研究〉,《中國文哲研究集刊》,10(1997.03),頁317-356。
14. 彭小妍:〈浪蕩子美學與越界──新感覺派作品中的性別、語言與漫遊〉,《中國文哲研究集刊》,28(2005),頁121-148。
15. 鄭明娳:〈施蟄存小說中的兩性關係〉,《教學與研究》,13(1991.06),頁83-91。