|
[1]A. T. Reisner, G. D. Clifford and R. G. Mark, "The Physiological Basis of the Electrocardiogram," in Advanced Methods and Tools for ECG Data Analysis, ed: Artech House Norwood, MA, 2006, pp. 1-25. [2]P. Trahanias and E. Skordalakis, "Syntactic pattern recognition of the ECG," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 648-657, 1990. [3]N. Maglaveras, T. Stamkopoulos, K. Diamantaras, C. Pappas and M. Strintzis, "ECG pattern recognition and classification using non-linear transformations and neural networks: A review," International Journal of Medical Informatics, vol. 52, pp. 191-208, 1998. [4]A. Gacek and W. Pedrycz, "A genetic segmentation of ECG signals," IEEE Transactions on Biomedical Engineering, vol. 50, pp. 1203-1208, 2003. [5]M. P. S. Chawla, H. K. Verma and V. Kumar, "Artifacts and noise removal in electrocardiograms using independent component analysis," International Journal of Cardiology, vol. 129, pp. 278-281, 2008. [6]T. Stamkopoulos, K. Diamantaras, N. Maglaveras and M. Strintzis, "ECG analysis using nonlinear PCA neural networks for ischemia detection," IEEE Transactions on Signal Processing, vol. 46, pp. 3058-3067, 1998. [7]T. B. Garcia and N. Holtz, Introduction to 12-Lead ECG: The Art of Interpretation: Jones and Bartlett, 2001. [8]S. M. Salerno, P. C. Alguire and H. S. Waxman, "Competency in Interpretation of 12-Lead Electrocardiograms: A Summary and Appraisal of Published Evidence," Annals of Internal Medicine, vol. 138, pp. 751-760, 2003. [9]S. M. Salerno, P. C. Alguire and H. S. Waxman, "Training and Competency Evaluation for Interpretation of 12-Lead Electrocardiograms: Recommendations from the American College of Physicians," Annals of Internal Medicine, vol. 138, pp. 747-750, 2003. [10]J. L. Willems, C. Abreu-Lima, P. Arnaud, J. H. Van Bemmel, C. Brohet, R. Degani, B. Denis, J. Gehring, I. Graham, G. Van Herpen, H. Machado, P. W. Macfarlane, J. Michaelis, S. D. Moulopoulos, P. Rubel, and C. Zywietz, "The diagnostic performance of computer programs for the interpretation of electrocardiograms," New England Journal of Medicine, vol. 325, pp. 1767-1773, 1991. [11]K. Poon, P. M. Okin and P. Kligfield, "Diagnostic performance of a computer-based ECG rhythm algorithm," Journal of Electrocardiology, vol. 38, pp. 235-238, 2005. [12]R. Bousseljot, D. Kreiseler and A. Schnabel, "Nutzung der EKG-Signal-datenbank CARDIODAT der PTB Ober uber das Internet," Biomedizinische Technik, vol. 40, pp. 317-318, 1995. [13]D. Kreiseler and R. Bousseljot, "Automatisierte EKG Auswertung mit Hilfe der EKG-Signaldatenbank CARDIODAT der PTB," Biomedizinische Technik, vol. 40, pp. 319-320, 1995. [14]Y. J. Lin, Y. B. Liu and C. C. Chu, "Incremental changes in QRS duration predict mortality in patients with atrial fibrillation," PACE - Pacing and Clinical Electrophysiology, vol. 32, pp. 1388-1394, 2009. [15]S. A. Hunt, D. W. Baker, M. H. Chin, M. P. Cinquegrani, A. M. Feldman, G. S. Francis, T. G. Ganiats, S. Goldstein, G. Gregoratos, M. L. Jessup, R. J. Noble, M. Packer, M. A. Silver, L. W. Stevenson, R. J. Gibbons, E. M. Antman, J. S. Alpert, D. P. Faxon, V. Fuster, A. K. Jacobs, L. F. Hiratzka, R. O. Russell, and S. C. Smith Jr, "ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: Executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure)," Journal of the American College of Cardiology, vol. 38, pp. 2101-2113, 2001. [16]J. Mant, D. A. Fitzmaurice, F. D. R. Hobbs, S. Jowett, E. T. Murray, R. Holder, M. Davies, and G. Y. H. Lip, "Accuracy of diagnosing atrial fibrillation on electrocardiogram by primary care practitioners and interpretative diagnostic software: Analysis of data from screening for atrial fibrillation in the elderly (SAFE) trial," British Medical Journal, vol. 335, pp. 380-382, 2007. [17]R. Alcaraz and J. J. Rieta, "A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms," Biomedical Signal Processing and Control, 2009. [18]V. Fuster, L. E. Ryden, D. S. Cannom, H. J. Crijns, A. B. Curtis, K. A. Ellenbogen, J. L. Halperin, J. Y. Le Heuzey, G. N. Kay, J. E. Lowe, S. B. Olsson, E. N. Prystowsky, J. L. Tamargo, S. Wann, S. C. Smith Jr, A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, S. A. Hunt, R. Nishimura, J. P. Ornato, R. L. Page, B. Riegel, S. G. Priori, J. J. Blanc, A. Budaj, A. J. Camm, V. Dean, J. W. Deckers, C. Despres, K. Dickstein, J. Lekakis, K. McGregor, M. Metra, J. Morais, A. Osterspey, and J. L. Zamorano, "ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for practice guidelines (Writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation)," Circulation, vol. 114, pp. e257-e354, 2006. [19]"2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care," Circulation., vol. 112, pp. IV1-203, 2005. [20]F. Jager, G. B. Moody, A. Taddei and R. G. Mark, "Performance measures for algorithms to detect transient ischemic ST segment changes," in Computers in Cardiology, pp. 369-372, 1992. [21]S. Kara and M. Okandan, "Atrial fibrillation classification with artificial neural networks," Pattern Recognition, vol. 40, pp. 2967-2973, 2007. [22]O. Rioul and M. Vetterli, "Wavelets and signal processing," IEEE Signal Processing Magazine, vol. 8, pp. 14-38, 1991. [23]M. Unser and A. Aldroubi, "A review of wavelets in biomedical applications," Proceedings of the IEEE, vol. 84, pp. 626-638, 1996. [24]P. S. Addison, J. N. Watson, G. R. Clegg, P. A. Steen and C. E. Robertson, "Finding coordinated atrial activity during ventricular fibrillation using wavelet decomposition," IEEE Engineering in Medicine and Biology Magazine, vol. 21, pp. 58-61+65, 2002. [25]C. Li, C. Zheng and C. Tai, "Detection of ECG characteristic points using wavelet transforms," IEEE Transactions on Biomedical Engineering, vol. 42, pp. 21-28, 1995. [26]A. Diery, D. Rowlands, T. R. H. Cutmore and D. James, "Automated ECG diagnostic P-wave analysis using wavelets," Computer Methods and Programs in Biomedicine, Article in Press, 2010. [27]Y. Sun, K. L. Chan and S. M. Krishnan, "Characteristic wave detection in ECG signal using morphological transform," BMC Cardiovascular Disorders, vol. 5, art. no. 28, 2005. [28]J. Carlson, R. Johansson and S. B. Olsson, "Classification of electrocardiographic P-wave morphology," IEEE Transactions on Biomedical Engineering, vol. 48, pp. 401-405, 2001. [29]T. Yamane, D. C. Shah, J. T. Peng, P. Jas, M. Hocini, I. Deisenhofer, K. J. Choi, L. Macle, J. Clementy, and M. Hassaguerre, "Morphological characteristics of P waves during selective pulmonary vein pacing," Journal of the American College of Cardiology, vol. 38, pp. 1505-1510, 2001. [30]M. P. S. Chawla, "PCA and ICA processing methods for removal of artifacts and noise in electrocardiograms: A survey and comparison," Applied Soft Computing Journal, Article in Press, 2010. [31]F. Castells, P. Laguna, L. Sornmo, A. Bollmann and J. M. Roig, "Principal component analysis in ECG signal processing," Eurasip Journal on Advances in Signal Processing, art. no.: 74580, 2007. [32]R. Ceylan and Y. Ozbay, "Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network," Expert Systems with Applications, vol. 33, pp. 286-295, 2007. [33]D. Ge, L. Sun, J. Zhou and Y. Shao, "Discrimination of myocardial infarction stages by subjective feature extraction," Computer Methods and Programs in Biomedicine, vol. 95, pp. 270-279, 2009. [34]Z. Shen, C. Hu, J. Liao and M. Q. H. Meng, "An algorithm of ST segment classification and detection," in 2010 IEEE International Conference on Automation and Logistics, pp. 559-564, 2010. [35]G. Y. Jeong, K. H. Yu and N. G. Kim, "A polynomial approximation approach for analyzing ST shape change," in Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 4034-4037, 2005. [36]G. Y. Jeong, K. H. Yu, M. J. Yoon and E. Inooka, "ST shape classification in ECG by constructing reference ST set," Medical Engineering and Physics, vol. 32, pp. 1025-1031, 2010. [37]J. J. Rieta, V. Zarzoso, J. Millet-Roig, R. Garcia-Civera and R. Ruiz-Granell, "Atrial activity extraction based on blind source separation as an alternative to QRST cancellation for atrial fibrillation analysis," in Computers in Cardiology, pp. 69-72, 2000. [38]P. Comon, "Independent component analysis, A new concept?," Signal Processing, vol. 36, pp. 287-314, 1994. [39]A. Hyvarinen and E. Oja, "Independent component analysis: Algorithms and applications," Neural Networks, vol. 13, pp. 411-430, 2000. [40]L. R. Rabiner and B.-H. Juang, "Introduction to Hidden Markov models," IEEE ASSP magazine, vol. 3, pp. 4-16, 1986. [41]L. R. Rabiner, "Tutorial on hidden Markov models and selected applications in speech recognition," Proceedings of the IEEE, vol. 77, pp. 257-286, 1989. [42]R. V. Andreao, B. Dorizzi and J. Boudy, "ECG signal analysis through hidden Markov models," IEEE Transactions on Biomedical Engineering, vol. 53, pp. 1541-1549, 2006. [43]D. A. Coast, R. M. Stern, G. G. Cano and S. A. Briller, "An approach to cardiac arrhythmia analysis using hidden Markov models," IEEE Transactions on Biomedical Engineering, vol. 37, pp. 826-836, 1990. [44]S. Graja and J. M. Boucher, "Hidden Markov tree model applied to ECG delineation," IEEE Transactions on Instrumentation and Measurement, vol. 54, pp. 2163-2168, 2005. [45]R. V. Andreao, B. Dorizzi, J. Boudy and J. C. M. Mota, "ST-segment analysis using hidden Markov model beat segmentation: Application to ischemia detection," in Computers in Cardiology, pp. 381-384, 2004. [46]S. Krimi, K. Ouni and N. Ellouze, "An approach combining Wavelet Transform and Hidden Markov Models for ECG segmentation," in 2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications, ICTTA 2008. [47]N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Snin, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903-995, 1998. [48]Z. Huang, Y. Chen and M. Pan, "Time-frequency characterization of atrial fibrillation from surface ECG based on Hilbert-Huang transform," Journal of Medical Engineering and Technology, vol. 31, pp. 381-389, 2007. [49]S. L. Lin, P. C. Tung and N. E. Huang, "Data analysis using a combination of independent component analysis and empirical mode decomposition," Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 79, art. no. 066705, 2009. [50]I. Guler and E. D. Ubeyli, "ECG beat classifier designed by combined neural network model," Pattern Recognition, vol. 38, pp. 199-208, 2005. [51]C. Papaloukas, D. I. Fotiadis, A. Likas and L. K. Michalis, "An ischemia detection method based on artificial neural networks," Artificial Intelligence in Medicine, vol. 24, pp. 167-178, 2002. [52]B. Heden, H. Ohlin, R. Rittner and L. Edenbrandt, "Acute myocardial infarction detected in the 12-lead ECG by artificial neural networks," Circulation, vol. 96, pp. 1798-1802, 1997. [53]H. Atoui, J. Fayn and P. Rubel, "A novel neural-network model for deriving standard 12-lead ECGs from serial three-lead ECGs: Application to self-care," IEEE Transactions on Information Technology in Biomedicine, vol. 14, pp. 883-890, 2010. [54]K. R. Muller, S. Mika, G. Ratsch, K. Tsuda and B. Scholkopf, "An introduction to kernel-based learning algorithms," IEEE Transactions on Neural Networks, vol. 12, pp. 181-201, 2001. [55]H. Jiawei and K. Micheline, Data Mining: Concepts and Techniques 2nd ed. San Francisco, CA: Morgan Kaufmann Publishers Inc, 2001. [56]S. S. Mehta and N. S. Lingayat, "Application of support vector machine for the detection of P- and T-waves in 12-lead electrocardiogram," Computer Methods and Programs in Biomedicine, vol. 93, pp. 46-60, 2009. [57]M. Stridh and L. Sornmo, "Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation," IEEE Transactions on Biomedical Engineering, vol. 48, pp. 105-111, 2001. [58]P. S. Hamilton and W. J. Tompkins, "Compression of the ambulatory ECG by average beat subtraction and residual differencing," IEEE Transactions on Biomedical Engineering, vol. 38, pp. 253-259, 1991. [59]F. Castells, J. J. Rieta, J. Millet and V. Zarzoso, "Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias," IEEE Transactions on Biomedical Engineering, vol. 52, pp. 258-267, 2005. [60]M. G. Tsipouras, D. I. Fotiadis and D. Sideris, "An arrhythmia classification system based on the RR-interval signal," Artificial Intelligence in Medicine, vol. 33, pp. 237-250, 2005. [61]P. Langley, J. P. Bourke and A. Murray, "Frequency analysis of atrial fibrillation," in Computers in Cardiology, pp. 65-68, 2000. [62]A. Bollmann, D. Husser, L. Mainardi, F. Lombardi, P. Langley, A. Murray, J. J. Rieta, J. Millet, S. B. Olsson, M. Stridh, and L. Sornmo, "Analysis of surface electrocardiograms in atrial fibrillation: Techniques, research, and clinical applications," Europace, vol. 8, pp. 911-926, 2006. [63]J. J. Rieta, F. Castells, C. Sanchez, V. Zarzoso and J. Millet, "Atrial activity extraction for atrial fibrillation analysis using blind source separation," IEEE Transactions on Biomedical Engineering, vol. 51, pp. 1176-1186, 2004. [64]N. V. Thakor and Y. S. Zhu, "Applications of adaptive filtering to ECG analysis: Noise cancellation and arrhythmia detection," IEEE Transactions on Biomedical Engineering, vol. 38, pp. 785-794, 1991. [65]A. Belouchrani, K. Abed-Meraim, J. F. Cardoso and E. Moulines, "A blind source separation technique using second-order statistics," IEEE Transactions on Signal Processing, vol. 45, pp. 434-444, 1997. [66]R. Llinares and J. Igual, "Application of constrained independent component analysis algorithms in electrocardiogram arrhythmias," Artificial Intelligence in Medicine, vol. 47, pp. 121-133, 2009. [67]A. W. J. Van ''T Hof, A. Liem, M. J. De Boer and F. Zijlstra, "Clinical value of 12-lead electrocardiogram after successful reperfusion therapy for acute myocardial infarction," Lancet, vol. 350, pp. 615-619, 1997. [68]P. A. van der Vleuten, M. Vogelzang, T. Svilaas, I. C. C. van der Horst, R. A. Tio, and F. Zijlstra, "Predictive value of Q waves on the 12-lead electrocardiogram after reperfusion therapy for ST elevation myocardial infarction," Journal of Electrocardiology, vol. 42, pp. 310-318, 2009. [69]C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining and Knowledge Discovery, vol. 2, pp. 121-167, 1998. [70]B. M. Asl, S. K. Setarehdan and M. Mohebbi, "Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal," Artificial Intelligence in Medicine, vol. 44, pp. 51-64, 2008. [71]M. H. Song, J. Lee, S. P. Cho, K. J. Lee and S. K. Yoo, "Support vector machine based arrhythmia classification using reduced features," International Journal of Control, Automation and Systems, vol. 3, pp. 571-579, 2005. [72]K. K. Sung and T. Poggio, "Example-based learning for view-based human face detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 39-51, 1998. [73]R. J. Povinelli, "Towards the prediction of transient ST changes," in Computers in Cardiology, pp. 663-666, 2005. [74]K. Murphy, (2005). Hidden Markov Model (HMM) Toolbox for Matlab. Available: http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html [75]M. P. S. Chawla, H. K. Verma and V. Kumar, "A new statistical PCA-ICA algorithm for location of R-peaks in ECG," International Journal of Cardiology, vol. 129, pp. 146-148, 2008. [76]A. Muhammad, I. A. Malagore and F. A. Afsar, "Automatic detection and localization of myocardial infarction using back propagation neural networks," in 2010 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010, art.no. 5514664, 2010. [77]H. L. Lu, K. Ong and P. Chia, "An Automated ECG classification system based on a neuro-fuzzy system," in Computers in Cardiology, pp. 387-390, 2000. [78]R. J. Martis, C. Chakraborty and A. K. Ray, "A two-stage mechanism for registration and classification of ECG using Gaussian mixture model," Pattern Recognition, vol. 42, pp. 2979-2988, 2009. [79]P. C. Chang, J. C. Hsieh, J. J. Lin, Y. H. Chou and C. H. Liu, "A Hybrid System with Hidden Markov Models and Gaussian Mixture Models for Myocardial Infarction Classification with 12-Lead ECGs," in 2009 11th IEEE International Conference on High Performance Computing and Communications, HPCC 2009, Seoul, pp. 110-116, 2009. [80]S. N. Yu and Y. H. Chen, "Noise-tolerant electrocardiogram beat classification based on higher order statistics of subband components," Artificial Intelligence in Medicine, vol. 46, pp. 165-178, 2009.
|