(34.237.52.11) 您好!臺灣時間:2021/05/18 14:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡調源
研究生(外文):Tiao-Yuan Jian
論文名稱:微流道泡棉甲醇蒸氣重組反應器之研究
論文名稱(外文):Fabrication of metal foam reactor for production of hydrogen from steam reforming of methanol
指導教授:沈家傑
指導教授(外文):Chia-Chieh Shen
學位類別:碩士
校院名稱:元智大學
系所名稱:先進能源研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:105
中文關鍵詞:甲醇蒸氣重組銅泡棉洗積製氫
外文關鍵詞:Methanol steam reformingCopper foamWashcoatingHydrogen production
相關次數:
  • 被引用被引用:1
  • 點閱點閱:473
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係研究商購氧化鈰溶膠作為黏著劑,將稀土物助劑的高活性銅基稀土催化劑塗佈於微流道銅泡棉表面,製成金屬泡棉反應器(MFR),以甲醇蒸氣重組(SRM)反應器,進行製氫反應。在填充床反應器(PBR)測試中,催化劑Cu5Ce1Pr1Zn3的SRM活性表現已接近商購催化劑的水準,所產生的一氧化碳含量(4600 ppm)低於商購催化劑的一氧化碳含量(6600 ppm)。以銅泡棉多孔隙的高表面積與銅金屬的高熱傳導,能快速由外部供熱給洗積於泡棉表面的催化劑層,銅泡棉反應器的SRM活性優於PBR,當反應溫度為255 °C時,甲醇轉化率為95%,一氧化碳含量為15000 ppm,產生約370 ml/min的氫氣(乾式),經由假設PEMFC 的效能為50%來評估,製得的銅泡棉反應器約可提供燃料電池33 W之電量。

A metal-foam reactor (MFR) with a volume of 8 ml was fabricated from a copper foam with 80 (Pore per inch, PPI) porosity. The active Cu/Zn catalysts promoted by bicomponent rare earths were washcoated with commercial ceria sol to form a MFR for the production of hydrogen via the steam reforming of methanol (SRM). Cu5Ce1Pr1Zn3 catalyst was tested in a packed-bed reactor (PBR). While the SRM activity of Cu5Ce1Pr1Zn3 was close to commercial catalyst, the concentration of CO is lower than commercial catalyst. Porous copper foam has high surface area and thermoconductivity, supplying external heat quickly to the catalyst layer on the foam surface. The SRM conversion in MFR was superior to that in PBR. The reformat H2-rich gas contains a 15000 ppm of CO and has a H2 production of 370 ml/min at T95 = 255 °C. The amount of H2 production from this reactor can be fed to a 33 W PEMFC based on the assumption of operational fuel cell efficiency of 50%.

目 錄
頁次
論文口試委員審定書 II
授權書 III
摘 要 IV
英 文 摘 要 V
誌謝 VI
表 目 錄 IX
圖 目 錄 X
第一章 前言 13
1.1 引言 13
1.2氫氣燃料電池的原理 14
1.3 氫氣的儲存與運送 16
第二章 理論基礎與文獻回顧 20
2.1常見的甲醇化學反應式 20
2.2 金屬泡棉簡介 26
2.3 催化劑洗積技術簡介 26
2.4 甲醇蒸氣重組反應器之回顧 28
2.5 研究動機與目標 31
第三章 實驗流程方法與設備 41
3.1 實驗藥品 41
3.2 實驗設備 42
3.3 實驗流程 43
3.4 特性分析與儀器測試 47
第四章 實驗結果與討論 65
4.1 催化劑之稀土金屬氧化物分析 65
4.2催化劑之特性分析 67
4.3銅泡棉反應器洗積附著度與活性測試 71
第六章 建議事項 94
參考文獻 95
附錄一 98


[1]Forschungszentrum Julich 官方網站
http://www.fz-juelich.de/ief/ief-3/fuel_cells/principles/
[2]K. Faungnawakij, R. Kikuchi, K. Eguchi, “Thermodynamic evaluation of methanol steam reforming for hydrogen production,” J. Power Sources, 161 (2006) 87-94.
[3]H. Purnama, T. Ressler, R.E. Jentoft, H. Soerijanto, R. Schlogl, R. Schomacker, “CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst,” Appl. Catal., A, 259 (2004) 83-94.
[4]J. Agrell, H. Birgersson, M. Boutonnet, “Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst : a kinetic analysis and strategies for suppression of CO formation, ” J. Power Sources, 106 (2002) 249-257
[5]B. A. Peppley, J. C. Amphlett, L. M. Kearns, R. F. Mann, “Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1:the reaction network,” Appl. Catal., A, 179 (1999) 21-29.
[6]B. A. Peppley, J. C. Amphlett, L. M. Kearns, R. F. Mann, “Methanol-steam reforming on Cu/ZnO/Al2O3. Part 2:A comprehensive kinetic model,” Appl. Catal., A, 179 (1999) 31-49.
[7]B. A. Peppley, J. C. Amphlett, L. M. Kearns, R. F. Mann, “Kinetic studies using temperature-scanning:the steam-reforming of methanol,” Appl. Catal., A, 179 (1999) 51-70.
[8]I. Nakamura, H. Nakano, T. Fujitani, T. Uchijima, J. Nakamura, “Evidence for a special formate species adsorbed on the Cu–Zn active site for methanol synthesis,” Surf. Sci., 402-404 (1998) 92-95.
[9]W. H. Cheng, “Reaction and XRD studies on Cu based methanol decomposition catalysts:Role of constituents and development of high-activity multicomponent catalyst,” Appl. Catal., A, 130 (1995) 13-30.
[10]I. Ritzkopf, S. Vukojevic, C. Weidenthaler, J. D. Grunwaldt, F. Schuth, “Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique,” Appl. Catal., A, 302 (2006) 215-223.
[11]Y. Matsumura, H. Ishibe, “High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts,” Appl. Catal., B, 91 (2009) 524-532.
[12]Y. Matsumura, H. Ishibe, “Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol–gel method,” Appl. Catal., B, 86 (2009) 114-120.
[13]Y. Matsumura, H. Ishibe, “Suppression of CO by-production in steam reforming of methanol by addition of zinc oxide to silica-supported copper catalyst,” J. Catal., 268 (2009) 282-289.
[14]Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, “Highly active copper/ceria catalysts for steam reforming of methanol,” Appl. Catal., A, 223 (2002) 137-145.
[15]Wikipedia 英文官方網站
http://en.wikipedia.org/wiki/File:Fluorite.GIF
[16]X. Tang, B. Zhang, Y. Li, Y. Xu, Q. Xin, W. Shen, “CuO/CeO2 catalysts: Redox features and catalytic behaviors,” Appl. Catal., A, 288 (2005) 116-125.
[17]蔡名竣,“稀土金屬對銅鋅催化劑於甲醇蒸氣重組的影響,”元智大學化學工程與材料科學系碩士論文 (2010).
[18]L. Yan, R. Yu, G. Liu, X. Xing, “A facile template-free synthesis of large-scale single crystalline Pr(OH)3 and Pr6O11,” Scripta Mater., 58 (2008) 707-710.
[19]L. Ma, W. X. Chen, J. Zhao, Y. F. Zheng, “Synthesis of Pr(OH)3 and Pr6O11 nanorods by microwave-assisted method: Effects of concentration of alkali and microwave heating time,” J. Cryst. Growth, 303 (2007) 590-596.
[20]葉琇屏,“以氧化鈰溶膠洗積甲醇蒸氣重組催化劑於微型流道反應器之研究,”元智大學化學工程與材料科學系碩士論文 (2009).
[21]W. Cao, G. Chen, S. Li, Q. Yuan, “Methanol-steam reforming over a ZnO-Cr2O3/CeO2-ZrO2/Al2O3 catalyst,” Chem. Eng. J., 119 (2006) 93-98.
[22]A. Kundu, J. M. Park, J. E. Ahn, S. S. Park, Y.G. Shul, H. S. Han, “Micro-channel reactor for steam reforming of methanol,” Fuel, 86 (2007) 1331-1336.
[23]A. Kundu, J. E. Ahn, S. S. Park, Y.G. Shul, H. S. Han, “Process intensification by micro-channel reactor for steam reforming of methanol,” Chem. Eng. J., 135 (2008) 113-119.
[24]P.J. de Wild, M. J. F. M. Verhaak, “Catalytic production of hydrogen from methanol,” Catal. Today, 60 (2000) 3-10.
[25]H. Yu, H. Chen, M. Pan, Y. tang, K. Zeng, F. Peng, H. Wang, “Effect of the metal foam materials on the performance of methanol steam micro-reformer for fuel cells,” Appl. Catal., A, 327 (2007) 106-113.
[26]H. Yu, H. Chen, M. Pan, Y. tang, K. Zeng, F. Peng, H. Wang, J. Yang, “Assessment and optimization of the mass-transfer limitation in a metal foam methanol microreformer,” Appl. Catal., A, 337 (2008) 155-162.
[27]張几中,“可撓式多功能微型感測器嵌入於微型重組器即時微觀診斷,”元智大學機械工程學系碩士論文 (2010)
[28]D. R. lide, “CRC handbook of chemistry and physics,” 89 (2008)


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top