跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/18 03:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊蘭治
研究生(外文):Lan-Chih Yang
論文名稱:光通訊網路技術之研究
論文名稱(外文):Studies on Optical Communication Network Technologies
指導教授:黃建彰黃建彰引用關係
指導教授(外文):Chien-Chang Huang
學位類別:博士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:78
中文關鍵詞:分光器光漩渦編/解碼器光波交換網路保護策略
外文關鍵詞:splitter,vortex,encoder/decoder,optical switching network ,protection strategy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出光通訊網路技術相關之研究,我們從光通訊元件著手,首先利用光子晶體的技術提出一種分光器,它是以許多不同大小和型式的空氣洞建構在Si/SiO2/Si架構上的光子晶體,當移動波導中的三角形空氣洞的位置即可調整分光比,此分光器具有低的插入損失、體積小(約34μm2)、設計簡單、成本低且分光效果良好的優點,未來可應用在光纖網路之光交換器上。第二部分我們建構以SOI為基底的光子晶體,利用FDTD模擬的方法將光打入此光子晶體中,當光子晶體作適當排列使光之繞射具有相位奇異點,即可觀測到光漩渦的現象,此現象將來有機會應用在非線性交換器及光纖網路上。而在光通訊網路架構的研究上,我們提出一個CDMA編/解碼器,並找出耦合比k及頻率f之最佳化參數(k, f)值,它因製造簡單、成本低加上編解碼之效果良好,未來可應用在光纖網路上。接著我們建構兩種多通道多波長架構之光交換器,並改變串音及插入損失來分析BER值,發現Dilated Benes 的架構性能較佳,將來可應用在光纖網路上。最後我們分析台灣本島SDH骨幹光纖網路非自復環任一條鏈路中斷時各種復原策略,未來當台灣光纖網路某一段光纖中斷時可應用此復元機制。

In this dissertation some study results on the network technologies are proposed for optical communications. We start from the component level in which a novel optical power splitter is shown using photonic crystal structure built on Si/SiO2/Si substrate where three types of air holes are utilized to construct the photonic crystal. This splitter has advantages of low insertion loss, small size (about 34?m2), easy design, and low cost features, and has potential in applications of fiber network cross connection. Next we study the optical vortex phenomenon for the photonic crystal on the SOI structure. The simulation is conducted by launching the light to the photonic crytal using FDTD method. As the diffraction caused by the certain photonic crystal arrangement introduces some optical phase singularities, the vortex phenomena can be observed. The optical vortices may be useful for the development of future optical nonlinear switches with the aid of the strong field at the vortex spot which acts as a switching point in integrated optical circuits. For the optical network architecture, we propose a new dynamic encoder/decoder for fiber CDMA networks. The theoretical models are developed using the Z-transform and E-field response of the dynamic encoder/decoder with an E/O coupler. From simulation studies, we can get some (k, f) parameter combinations to acheieve the optimum performance of the system. The new structure is simple and flexible in producing any other code sequences that are applied for the fiber network. And then, we compare performances for two types of switching configurations through the simulation studies. The Dilated Benes is found to be better than the other one. This information is useful for the optical switching network designs. Finally we analyze the SDH backbone fiber network in Taiwan with non-self-healing ring, and propose a recovery strategy when any communication link fails. This protection scheme can be applied at the beginning of the deployment for the Taiwan SDH fiber network.

目 錄
書名頁 --------------------------------------------------i
論文口試委員審定書 --------------------------------------ii
授權書 --------------------------------------------------iii
中文提要 ------------------------------------------------iv
英文提要 ------------------------------------------------v
誌謝 ----------------------------------------------------vii
目錄 ----------------------------------------------------ix
表目錄 --------------------------------------------------xi
圖目錄---------------------------------------------------ix
符號說明 ------------------------------------------------xi
第一章 緒論 ---------------------------------------------1
第一節 研究背景 ----------------------------------------1
第二節 本論文貢獻 --------------------------------------3
第三節 各章節內容概述 ----------------------------------3
第二章 以SOI為基底建構在PBG架構上之分光器 ---------------5
第一節 概說 --------------------------------------------5
第二節 設計1×2 光功率分光器 ----------------------------6
第三節 模擬結果 ----------------------------------------7
第四節 討論 --------------------------------------------12
第五節 小結 --------------------------------------------13
第三章 SOI基底之光子晶體架構光漩渦現象的觀測-以FDTD模擬-14
第一節 概說 --------------------------------------------14
第二節 SOI PBG 架構描述 --------------------------------15
第三節 SOI PBG 波導的模擬結果 --------------------------16
第四節 位於中心光子晶體的光漩渦現象 --------------------18
第五節 小結 --------------------------------------------22
第四章 CDMA光纖網路動態編/解碼器分析 --------------------23
第一節 概說 --------------------------------------------23
第二節 理論模型 ----------------------------------------23
壹、CDMA光纖網路編碼系統的特性 ------------------------25
貳、使用一個光電耦合器的Z模型動態編/解碼器 ------------25
叁、使用一個光電耦合器之E模型動態編/解碼器 ------------27
第三節 模擬結果 ----------------------------------------30
壹、動態編/解碼器之RF頻率響應 -------------------------30
貳、動態編/解碼器之光頻率響應 -------------------------31
叁、從Z模型及E模型模擬中決定各種參數設定 --------------33
第四節 小結 --------------------------------------------34
第五章 使用多通道多波長光源之光波交換網路效能分析 -------35
第一節 概說 --------------------------------------------35
第二節 BER 效能分析之理論推導 --------------------------36
第三節 32×32 光波交換網路之效能分析 --------------------38
壹、以2×2為基底建構Dilated Benes架構之光波交換器-------38
貳、以2×2為基底建構Modified Dilated Benes架構之光波交換
器 ------------------------------------------------41
第四節 小結 --------------------------------------------42
第六章 台灣本島SDH骨幹光纖網路之保護策略與斷路恢復時間量測44
第一節 概說 --------------------------------------------44
第二節 系統架構圖說明 ----------------------------------44
第三節 恢復時間定義 ------------------------------------46
第四節 實驗結果 ----------------------------------------47
第五節 小結 --------------------------------------------57
第七章 結論 ---------------------------------------------58
參考文獻 ------------------------------------------------60發表論文 ------------------------------------------------74
自傳 ----------------------------------------------------76
表 目 錄
表 5-1 當插入損失為0.2 dB、0.5 dB及BER值為10?15比較 Dilated Benes及Modified Dilated Benes兩種架構傳輸速度為1.25 Gbps、2.5 Gbps、10 Gbps 及40 Gbps之輸入功率 -------------------43
表 6-1台灣SDH骨幹光纖網路Link之距離 ---------------------46
表 6-2台灣SDH骨幹光纖網路非自復環LINK A,B,H,J,K,L,M,N及O 之
保護策略及距離 ------------------------------------51
表 6-3台灣SDH骨幹光纖網路非自復環LINK A,B,H,J,K,L,M,N及O之
保護策略及最小恢復時間 ----------------------------------56
圖 目 錄
圖 2-1 1×2 PBG 架構的光功率分光器實體圖 -----------------6
圖 2-2以時域有線插分法FDTD 模擬分光器各分光比之上視圖
(a) 5:5 (b) 6:4 (c) 7:3 (d) 8:2 -------------------9
圖 2-3變化三角形空氣洞在X軸的位移以FDTD 模擬輸出分光比 --10圖 2-4分光比 (P1/P2) 對應三角型空氣洞在X軸的位置---------11
圖 3-1以SOI為基底多模態的光子晶體結構--------------------15
圖 3-2(a)光子晶體間隙為0.5μm 光傳輸時間t = 33.0ns以 FDTD 模擬結果 --------------------------------------------------16
圖 3-2(b)光子晶體間隙為0.7μm 光傳輸時間t = 33.0ns以 FDTD 模
擬結果 --------------------------------------------------17
圖 3-2(c)光子晶體間隙為1μm 光傳輸時間t = 33.0ns以 FDTD 模擬
結果 ----------------------------------------------------17
圖 3-3 光子晶體間隙為1μm 寬度為1μm,傳輸時間為33.7ns,單一
光子晶體的觀測光漩渦現象的俯視圖 ------------------------18
圖 3-4 光子晶體間隙為1μm 寬度為1μm,傳輸時間為34.0ns,單一
光子晶體的觀測光漩渦現象的俯視圖 ------------------------18
圖 3-5 光子晶體間隙為1μm 寬度為1μm,傳輸時間為34.3ns,單一
光子晶體的觀測光漩渦現象的俯視圖 ------------------------19
圖 3-6 光子晶體間隙為1μm 寬度為1μm,傳輸時間為34.7ns,單一
光子晶體的觀測光漩渦現象的俯視圖 ------------------------20
圖 3-7 光子晶體間隙為1μm 寬度為1μm,傳輸時間為35.0ns,單一
光子晶體的觀測光漩渦現象的俯視圖 ------------------------20
圖 3-8 光子晶體間隙為1μm 寬度為1μm,傳輸時間為35.3ns,單一
光子晶體的觀測光漩渦現象的俯視圖 ------------------------21
圖 3-9 光子晶體間隙為1μm 寬度為1μm,傳輸時間為35.6ns,單一
光子晶體的觀測光漩渦現象的俯視圖 ------------------------21
圖 4-1 具有一個光電耦合器之動態編/解碼器示意圖 ----------24
圖 4-2 為圖4-1的理論模型 --------------------------------26
圖 4-3 Mach-Zehnder 交換器的示意圖 ----------------------27
圖 4-4 使用一個耦合器及變化耦合比k 之動態相關頻率響應圖 -30
圖 4-5 具有一個耦合器迴圈增益G = 0.8 , G1 = 1,耦合比k = 0.094及 k = 0.905之動態編/解碼器光頻率響應T31(E) --------31
圖 4-6 具有一個耦合器迴圈增益G = 1 , G1 = 1,耦合比k = 0.351 及k = 0.987之動態編/解碼器光頻率響應T31(E) --------32
圖 4-7 具有一個耦合器迴圈增益G = 1.2 , G1 = 1,耦合比k = 0.023及 k = 0.499之動態編/解碼器光頻率響應T31(E) --------32
圖 4-8 Z模型及E模型模擬之最佳化 (k, f) 值 ---------------33
圖 5-1 32×32 光波交換網路系統之示意圖 -------------------39
圖 5-2 在Dilated Benes架構下,當傳輸速度為40 Gbit/s ,插入損失為0.2 dB,以Opti-System 模擬BER值 ---------------------40
圖 5-3 在Modified Dilated Benes架構下,當傳輸速度為40 Gbit/s ,插入損失為0.2 dB,以Opti-System 模擬BER值 ------41
圖 6-1 台灣SDH骨幹光纖網路示意圖 ------------------------45
圖 6-2 頻寬切換 (Span Switch) -------------------------48
圖 6-3 環切換 (Ring Switch) ---------------------------48
圖 6-4 鏈路支援 (Link restoration) --------------------49
圖 6-5 路徑支援(Path restoration) ---------------------49
圖 6-6 台灣SDH骨幹光纖網路故障查測流程圖 ----------------50
圖 6-7 Link A中斷時各種保護策略分析 ---------------------52
圖 6-8 Link A中斷時各種保護策略之恢復時間 ---------------53
圖 6-9 Link B中斷時各種保護策略分析 ---------------------54
圖 6-10 Link B中斷時各種保護策略之恢復時間 --------------54




[1]K. C. Kao and G. A. Hockham “Dielectric-fibre surface waveguides for optical frequencies,” Proc. IEE, Vol. 113, No. 7, pp.1151-1158, Jul. 1966.
[2]T. Miya, Y. Terunuma, T. Hosaka and T. Miyashita, “ Ultimate low-loss single-mode fibre at 1-55 jim,” Electronics Letters 15th February, Vol. 15 No. 4, pp. 106-108, Feb. 1979.
[3]H. H. Lu, W. S. Tsai, T. S. Chien, S. H. Chen, B.S. Cheng and C. C. Chen, “A Bidirectional Radio-on DWDM Transport System for LAN and ITS Applications,” IEEE Photonics Technology Lett., Vol. 18, No. 1, pp. 127-129, Jan. 2006.
[4]L. N. Binh and T. L. Huynh, “Phase-modulated hybrid 40Gb/s and 10Gb/s DPSK DWDM long-haul optical transmission,” Optical Fiber Communication, Issue 25-29, pp.1-11, Mar. 2007.
[5]D. C. Lee, “100G and DWDM: Application Climate, Network and Service Architecture,” Optical Fiber communication, Issue 24-28, pp.1-3, Feb. 2008.
[6]R. G. Heiderman, A. Melloni, M. Hoekman, A. Borreman, A. Leinse and F. Morichetti, “Low loss, high contrast optical waveguides based on CMOS compatible LPCVD processing: technology and experimental results,” IEEE/LEOS Proceedings Symposium, pp.71-75, 2005.
[7]J. W. Goodman and S. Y. Kung, “Optical Interconnections for VLSl Systems,” Proceedings of the IEEE, Vol.72, No. 7, pp. 850-866, Jul. 1984.
[8]S. Baglio, M. Cappeddu, N. Savalli, C. Trigona, M. Bloemer, M Scalora and M. C. Larciprete, “Novel SOI inertial sensors with optical readout based on transparent metals,” IEEE Sensors 2008 Conference, pp. 333-336, 2008.
[9]V. Radisic, Y. Qian, R. Coccioli and T. Itoh, “Novel 2-D Photonic Bandgap Structure for Microstrip Lines,” IEEE Microwave and Guided Wave Lett., Vol. 8, No. 2, pp. 69-71, Feb. 1998.
[10]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett., Vol. 58, pp. 2059–2062, 1987.
[11]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., Vol. 58, pp. 2486-2489, 1987.
[12]K. Y. Guslienko, V. Novosad, Y. Otani, H. Shima and K. Fukamichi, “Field evolution of magnetic vortex state in ferromagnetic disks,” Applied Physics Lett., Vol. 78, Issue 24, pp. 3848-3850, Jun. 2001.
[13]A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe and J. N. Sweetser, “Fibre Bragg grating based spectral encoder/ decoder for lightwave CDMA,” Electronics Lett., Vol. No. 13, pp. 1096-1097, Jun. 1999.
[14]S. Andrew and H. Edward, “Optical Code-Division Multiple Access and Quality of Service Provisioning,” IEEE Network, Vol. 14, Issue 6, pp. 42-46, Dec. 2000.
[15]Shyh-Lin Tsao and Lan-Chih Yang, “Delay Time Measurement and Comparison of Protection Strategies with One-Link Failed Domestic Optical Fiber Networks in Taiwan,” OECC 2003, Vol. S1, pp. 307, 2003.
[16]C. W. Hsu, H. L Chen, and W. S. Wang, “Compact Y-branch power splitter based on simplified coherent coupling,” IEEE Photonic Technology Lett., Vol. 15, pp. 1103-1105, Aug. 2003.
[17]Y. Zeng, W. Liu, C. Long, Y. Luo, and Q. Xiao, “A 1×2 variable optical power splitter development,” Journal of Lightwave Technology, Vol. 24, pp. 1566-1570, Mar. 2006.
[18]A. B. Apsel, and A. G. Andreou, “A low-power silicon on sapphire CMOS optoelectronic receiver using low and high threshold devices,” IEEE Trans. Circuit & Systems—I: Regular Papers, Vol. 52, pp. 253-261, Feb. 2005.
[19]P. T. Lee, T. W. Fan, J. H. Fan, and F. M. Tsai, “High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect,” Applied Physics Lett., Vol. 90, pp. 151125, Apr. 2007.
[20]R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE Journal of Quantum Electronics, Vol. 27, pp. 1971-1974, Aug. 1991.
[21]I. V. Dzedolik and A. I. Dzedolik, “Linear and nonlinear vortex properties of pulses in optical fiber,” Proceedings of International Workshop on 4thLaser and Fiber-Optical Networks Modeling, pp. 218-223, Jun. 2002.
[22]Y.-F. Chen and Y.-P. Lan, “Spontaneous transverse pattern formation in a microchip laser excited by a doughnut pump profile,” Applied Physics B (Laser and Optics), Vol. B75, No. 4-5, pp. 453-456, Oct. 2002.
[23]J.-H. Jeon, W.-S. Choi, M.-K. Oh, K. An, and J.-H. Lee, “Gerneration of vortex by light-induced phase mask in a V-type atomic system,” Proceedings of Conf. Lasers Electro-Optics, CLEO/Pacific Rim 2003, Vol. 2, pp. 520, Dec. 2003.
[24]G. Molina-Terriza and L. Torner, “Reconfigurable beam shaping in parametric wave mixing,” Proceedings of Conf. Lasers Electro-Optics Europe, Sep. 2000.
[25]Yu. Egorov, A. Alexeycv, T. I. Anovich, A. Volyar, and M. Soskin, “Temperature characteristics measurement at expense of single vortex recovering,” Proceedings of International Workshop on 4thLaser and Fiber-Optical Networks Modeling, pp. 213-217, Jun. 2002.
[26]B. Luther-Davies, J. Christou, V. Tikhonenko and Y. S. Kivshar, “Optical vortex solitons: experiment versus theory,” J. Opt. Soc. Am. B, Vol. 14, No. 11, pp. 3045-3053, Nov. 1997.
[27]Y. S. Kivshar, J. Christou, V. Tikhonenko, B. Luther-Davies and L.M. Pismen, “Dynamics of optical vortex solitons,” Optics Communications 152, pp. 198-206, Jun. 1998.
[28]A. A. Minzonni, N. F. Smyth, A. L. Worthy and Y. S. Kivshar, “Stabilization of vortex solitons in nonlocal nonlinear media,” Physical Review A, Vol. 76, pp. 063803, 2007.
[29]A. Shacham, B. A. Small, O. Liboiron-Ladouceur, and K. Bergman, “A fully implemented 12 x 12 data vortex optical packet switching interconnection network,” Journal of Lightwave Technology, Vol. 23, No. 10, pp. 3066-3075, Oct. 2005.
[30]Q. Yang, “Improved performance using shortcut path routing within data vortex switch network,” Electronics Lett., Vol. 41, No. 22, pp. 1253-1254, Oct. 2005.
[31]I. Iliadis, N. Chrysos, and C. Minkenberg, “Performance evaluation of the data Vortex photonic switch,” IEEE Journal on Selected Areas in Communications, Vol. 25, No. 6, pp. 20-35, Aug. 2007.
[32]H. D. Jung, I. T. Monroy, A. M. J. Koonen, and E. Tangdiongga, “All-optical data vortex node using an MZI-SOA switch srray,” IEEE Photonics Technology Lett., Vol. 19, No. 22, pp. 1777-1779, Nov. 2007.
[33]L.-C. Yang, C.-W. Tsai, K.-C. Lo and S.-L. Tsao, “An 1x2 SOI based optical splitter with adding triangular air hole in PBG cell,” Tamkang Journal of science and engineering, Vol. 7, No. 2 pp. 115-118, 2004.
[34]T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photonics Technology Lett., Vol. 18, No. 1, pp. 226-228, Jan. 2006.
[35]T. Morf, M. Kossel, J. Weiss, C. Menolfi, T. Toifl, G. V. Bueren, P. Buchmann and M. Schmatz, “Wide tuning range LC-oscillator in 65nm SOI CMOS based on switchable secondary inductor,” Electronics Lett., Vol. 43, No. 24, Nov. 2007.
[36]K. E. Moselund, D. Bouvet, L. Tschuor, V. Pott, P. Dainesi, C. Eggimann, N. L. Thomas, R. Houdre and A. M. Ionescu, “Cointegration of gate-all-around MOSFETs and local Silicon-on-Insulator optical waveguides on bulk Silicon,” IEEE Transactions on Nanotechnology, Vol. 6 No. 1, pp. 118-225, Jan. 2007.
[37]S. Xiaohua, D. Wei and D. W. E. Allsopp, “Multiwavelength transmission microcavity in SOI planar ridge waveguides,” Journal of Lightwave Technology, Vol. 25, No. 8, pp. 2206-2212, Aug. 2007.
[38]B. Kuhlow, G. Przyrembel, S. Schluter, W. Furst, R. Steingruber, and C Weimann, “Photonic crystal microcavities in SOI photonic wires for WDM filter applications,” Journal of Lightwave Technology, Vol. 25, No. 1, pp. 421-431, Jan. 2007.
[39]F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts and D. Taillaert, “Compact focusing grating couplers for Silicon-on-Insulator integrated circuits,” IEEE of Photonics Technology Lett., Vol. 19, No. 23, pp. 1919-1921, Dec. 2007.
[40]J. Brouckaert, G. Roelkens, D. V. Thourhout and R. Baets, “Compact InAlAs-InGaAs metal-semiconductor-metal photodetectors integrated on Silicon-on-Insulator waveguides,” IEEE of Photonics Technology Lett., Vol. 19, No. 19, pp. 1484-1486, Oct. 2007.
[41]H. M. Masoudi, “A novel nonparaxial time-domain beam-propagation method for modeling ultrashort pulses in optical structures,” Journal of Lightwave Technology, Vol. 25, No. 10, pp. 3175-3184, Oct. 2007.
[42]J. Bravo-Abad, S. Fan, S. G. Johnson, J. D. Joannopoulos and M. Soljacic, “Modeling nonlinear optical phenomena in nanophotonics,” Journal of Lightwave Technology, Vol. 25, No. 9, pp. 2539-2546, Sep. 2007.
[43]Y. Kim and J. Jeong, “Analysis of large-signal dynamic characteristics of 10-Gb/s tunable distributed Bragg reflector laser integrated with electroabsorption modulator and semiconductor optical amplifier based on the time-dependent transfer matrix method,” IEEE Journal of Quantum Electronics, Vol. 39, No. 10, pp. 1314-1320, Oct. 2003.
[44]G. Rodriguez, Y. Miyazaki and N. Goto, “Matrix-based FDTD parallel algorithm for big areas and its applications to high-speed wireless communications,” IEEE Transactions on Antennas and Propagation, Vol. 54, No. 3, pp. 785-796, Mar. 2006.
[45]BeamPROPTM Version 4.0, RSoft, Inc., NY, USA.
[46]A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Communication Magazine, Vol. 40, pp. 83-87, Sept. 2002.
[47]E. S. Shivaleela and T. Srinivas, “Construction of wavelength/time codes for fiber-optic CDMA networks,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, No. 5, pp. 1370-1377, Sep/Oct. 2007.
[48]T.-I. Choi, K. Y. Lee, D. R. Lee and J. K. Ahn, “Communication system for distribution aut omation using CDMA,” IEEE Trans. Power Delivery, Vol. 23, No. 2, pp. 650-656, Apr. 2008.
[49]P. C. Teh, P. Petropoulos, M. Ibsen and D. J. Richardson, “Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings,” IEEE Photonics Technology Lett., Vol. 13, No. 2, pp. 154-156, Feb. 2001.
[50]C.-C.Yang and J.-F. Huang, “Two-dimensional M-matrices coding in spatial/frequency optical CDMA networks,” IEEE Photonics Technology Lett., Vol. 15, No. 1, pp. 168-170, Jan. 2003.
[51]C.-C. Yang, J.-F. Huang and S.-P. Tseng, “Optical CDMA network codecs structured with M-sequence codes over waveguide-grating routers,” IEEE Photonics Technology Lett., Vol. 16, No. 2, pp. 641-643, Feb. 2004.
[52]C.-S. Weng and J. Wu, “Optical orthogonal codes with large crosscorrelation and their performance bound for asynchronous optical CDMA systems,” Journal of Lightwave Technology, Vol. 21, No. 3, pp. 735-742, Mar. 2003.
[53]K. Takiguchi and M. Itoh, “Integrated-optic encoder/decoder for time-spreading /wavelength-hopping optical CDMA,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 2, pp. 300-306, Mar/Apr. 2005.
[54]R. C. Menendez, P. Toliver, S. Galli, A. Agarwal, T. Banwell, J. Jackel, J. Young and S. Etemad, “Network applications of cascaded passive code translation for WDM-compatible spectrally phase-encoded optical CDMA,” Journal of Lightwave Technology, Vol. 23, No. 10, pp. 3219-3231, Oct. 2005.
[55]Y. Du, S. J. B. Yoo and Z. Ding, “Nonuniform spectral phase encoding in optical CDMA networks,” IEEE Photonics Technology Lett., Vol. 18, No. 23, pp. 2505-2507, Dec. 2006.
[56]F. S. Tabataba, S. M. Aghajanzadeh and M. Nasiri-Kenari, “Performance analysis of internally coded time-hopping coherent ultrashort light pulse CDMA scheme in fiber-optic communication systems,” Journal of Lightwave Technology, Vol. 25, No. 4, pp. 1095-1106, Apr. 2007.
[57]Y.-T Chang,. C.-C. Sue and J.-F. Huang, “Robust design for reconfigurable coder/decoders to protect against eavesdropping in spectral amplitude coding optical CDMA networks,” Journal of Lightwave Technology, Vol. 25, No. 8, pp. 1931-1948, Aug. 2007.
[58]F. Zeng, Q. Wang and J. Yao, “Sequence-inversion-keyed optical CDMA coding/decoding scheme using an electrooptic phase modulator and fiber Bragg grating arrays,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, No. 5, pp. 1508-1515, Sep/Oct. 2007.
[59]T. Miyazawa and I. Sasase, “BER performance analysis of spectral phase-encoded optical atmospheric PPM-CDMA communication systems,” Journal of Lightwave Technology, Vol. 25, No. 10, pp. 2992-3000, Oct. 2007.
[60]S. Holmes and R. Syms, “Switchable all-optical encoding and decoding using optical fibre lattices,” Optics Communications, Vol. 86, No. 1, pp. 25-28, Oct. 1991.
[61]W.-C. Kwong and P. R. Prucnal, “Synchronous CDMA demonstration for fiber-optic networks with optical processing,” IEE Electronics Lett., Vol. 26, No. 24, pp. 1990-1992, Nov. 1990.
[62]B. Vizoso, C. Vazquez, R. Civera, M. Lopez-Amo and M. A. Muriel, “Amplified fiber-optic recirculating delay lines,” Journal of Lightwave Technology, Vol. 12, No. 2, pp. 294-305, Feb. 1994.
[63]D. Pastor, S. Sales, J. Capmany, J. Marti and J. Cascon, “Amplified double coupler fiber-optic delay line filter,” IEEE Photonics Technology Lett., Vol. 7, No. 1, pp. 75-77, Jan. 1995.
[64]G.-C. Yang and W.-C. Kwong, “Prime codes with applications to CDMA optical and wireless networks,” Artech House, 2002.
[65]J.-M. Kang and S.-K. Han, “A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier,” IEEE Photonics Technology Lett., Vol. 18, Issue 3, pp. 502-504, Feb. 2006.
[66]M. Karasek, M. Menif and A. Bellemare, “Design of wideband hybrid amplifiers for local area networks,” IEE Proceedings Optoelectronics, Vol. 148, Issue 3, pp. 150-155, Jun. 2001.
[67]F. Koyama, T. Yamatoya and K. Iga, “Highly gain-saturated GaInAsP/InPSOA modulator for incoherent,” International conference on Indium Phosphide and Related Materials, Vol. 14-18, pp. 439-442, May. 2000.
[68]B. Glance, “Large-capacity local access network,” IEEE Photon. Technol. Lett., Vol. 5, pp. 1448-1451, Dec. 1993.
[69]J. J Martinez, J. I. G. Gregorio, A. L. Lucia, A. V. Velasco, J. C. Aguado and M. A. L. Binue, “Novel WDM-PON architecture based on a spectrally efficient IM-FSK scheme using DMLs and RSOAs,” Journal of Lightwave Technology, Vol. 26, Issue 3, pp. 350-356, Feb. 2008.
[70]F. Koyama, “Recent advances of VCSEL photonics,” Journal of Lightwave Technology, Vol. 24, Issue 12, pp. 4502-4513, Dec. 2006.
[71]N. Kashima, “Dynamic properties of FP-LD transmitters using side-mode injection locking for LANs and WDM-PONs,” Journal of Lightwave Technology, Vol. 24, Issue 8, pp. 3045-3058, Aug. 2006.
[72]C.-H Yeh, C.-C. Lee and S. Chi, “A tunable S-band erbium-doped fiber ring laser,” IEEE Photonics Technology Lett., Vol. 15, Issue 8, pp. 1053-1054, Aug. 2003.
[73]Y. W. Lee; J. Jung and B. Lee, “Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter,” IEEE Photonics Technology Lett., Vol. 16, Issue 1, pp. 54-56, Aug. 2004.
[74]G. Lu, K. H. Wagner and R. R. McLeod, “All-Optical Tb/S 3R wavelength conversion using dispersion-managed light bullets,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, Issue 3, pp. 625-634, May/Jun. 2008.
[75]T. Nakasyotani, H. Toda, T. Kuri and K. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” Journal of Lightwave Technology, Vol. 24, Issue 1, pp. 404-410, Jan. 2006.
[76]T. Kuri; T. Nakasyotani; H. Toda and K.-I. Kitayama, “Characterizations of supercontinuum light source for WDM millimeter-wave-band radio-on-fiber systems,” IEEE Photonics Technology Lett., Vol. 17, Issue 6, pp. 1274-1276, Jan. 2005.
[77]S.-B. Park; D. K. Jung; D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee and Y. K. Oh, “Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers,” IEEE Photonics Technology Lett., Vol. 19, Issue 4, pp. 248-250, Feb. 2007.
[78]S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh and Y. J. Oh, “Demonstration of WDM-PON with 50 GHz channel spacing employing spectrum-sliced reflective semiconductor optical amplifiers,” Electronics Lett., Vol. 42, Issue 20, pp. 1172-1173, Sep. 2006.
[79]P. J. Winzer, M. Pfennigbauer and R.-J. Essiambre, “Coherent crosstalk in ultradense WDM systems,” Journal of Lightwave Technology, Vol. 23, Issue 4, pp. 1734-1744, Apr. 2005.
[80]A. L. Campillo, “Interchannel nonlinear crosstalk in analog polarization modulated WDM systems,” Journal of Lightwave Technology, Vol. 24, Issue 3, pp. 1186-1193, Mar. 2006.
[81]E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada and M. Koga, “Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system,” IEEE Photonics Technology Lett., Vol. 19, Issue 1, pp. 9-11, Jan. 2007.
[82]C. Politi, D. Klonidis and M. J. OMahony, “Waveband converters based on four-wave mixing in SOAs,” Journal of Lightwave Technology, Vol. 24, Issue 3, pp. 1203-1217, Mar. 2006.
[83]H. Nakamura, H. Suzuki and K. Iwatsuki, “SNR degradation owing to spectrum sliced effect in carrier-distributed WDM-PON,” Electronics Lett., Vol. 42, Issue 3, pp. 179-181, Feb. 2006.
[84]S. Taccheo and K. Ennser, “Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses,” IEEE Photonics Technology Lett., Vol. 14, Issue 8, pp. 1100-1102, Aug. 2002.
[85]K. Padmanabhan and A. N. Netravali, “Dilated networks for photonic switching,” IEEE Transactions on communications, Vol. 35, No. 12, Dec. 1987.
[86]W. Kabacinski, “Modified dilated benes networks for photonic switching,” IEEE Transactions on communications, Vol. 47, No. 8, pp. 1253-1259, Aug. 1999.
[87]K. Oda and H. Toba, “Frequency stability of a waveguide-type frequency selection switch for optical FDM distribution,” Journal of Lightwave Technology, Vol. 11, No. 5/6, May/Jun. 1993.
[88]R. C. Steele, G. R. Walker and N. G. Walker, “Sensitivity of optically preamplified receivers with optical filtering,” IEEE Photonics Technology Lett., Vol. 3, No. 6, Jun. 1991.
[89]Opti-system software ver 3.1 2004.
[90]L. Zhou, M. Held, and U. Sennhauser, “Connection Availability Analysis of Shared Backup Path-Protected Mesh Networks,” Lightwave Technology, Vol. 25, pp. 1111-1119, May. 2007.
[91]X. Sun, C.K. Chan, and L. K. Chen,. “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photonics Technology Lett., Vol. 18, pp. 631-633, Feb. 2006.
[92]M. Maier, M. Herzog, M. Scheutzow, and M. Reisslein, “Protection a fast and efficient multiple-failure recovery technique for resilient packet ring using dark fiber,” Lightwave Technology, Vol. 23, pp. 2816-2838, Oct. 2005.
[93]H. Naser and H.T Mouftah, “A multilayer differentiated protection services architecture,” IEEE Selected Areas in Communications, Vol. 22, pp. 1539-1547, Oct. 2004.
[94]G. Conte, M. Listanti, M. Settembre and R. Sabella, “Strategy for protection and restoration of optical paths in WDM backbone networks for next-generation internet infrastructures,” Journal of Lightwave Technology, Vol. 20. No. 8, Aug. 2002.
[95]E. Georgios, G. H. Aklilu and E. S. Thomas, “Protection cycles in mesh WDM networks,” IEEE Journal on selected areas in communications, Vol. 18, No. 10. Oct. 2000.
[96]D. Griffith, and S. Lee, “A 1+1 protection architecture for optical burst switched networks,” IEEE Selected Areas in Communications, Vol. 21, pp. 1384-1398, Nov. 2003.
[97]Shyh-Lin Tsao and Lan-Chih Yang, “Delay Time Measurement and Comparison of Protection Strategies with One-Link Failed Domestic Optical Fiber Networks in Taiwan,” OECC 2003, Vol. S1, pp. 307. 2003.
[98]J. Tapolcai, P. H. Ho, T. Cinkler and A. Haque, “A new shared segment protection method for survivable networks with guaranteed recovery time,” IEEE Transactions on reliability, Vol. 57, No. 2, Jun. 2008.
[99]M. Kazutaka and S. K. Hyong, “Optimal capacity and flow assignment for self-healing ATM network based on line and end-to-end restoration,” IEEE/ACM Transactions on networking, Vol. 6, No. 2, Apr. 1998.
[100]T. H. Wu, “A passive protected self-healing mesh network architecture and applications,” IEEE/ACM Transactions on networking, Vol. 2, No. 1, Feb. 1994.
[101]H. Fujii and N. Yoshikai, “Restoration message transfer mechanism and restoration characteristics of double-search self-healing ATM network,” IEEE Journal on selected areas in communication, Vol. 12. No. 1. Jan. 1994.
[102]S. Ramamurthy, L. Sahasrabuddhe and B. Mukherjee, “Survivable WDM mesh network,” Journal of Lightwave Technology, Vol. 21, No. 4, Apr. 2003.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文