(3.235.191.87) 您好!臺灣時間:2021/05/13 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周明鴻
研究生(外文):Ming-Hung Chou
論文名稱:電動獨輪車載具之設計與實現
論文名稱(外文):Design and Implementation of Electric Unicycle Vehicle
指導教授:邱智煇
指導教授(外文):Chih-Hui Chiu
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:89
中文關鍵詞:電動獨輪車適應性模糊控制器學習速率李亞普諾夫定理
外文關鍵詞:electric unicycleadaptive fuzzy controllerlearning rateLyapunov theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們實現了一個以單輪為移動機制之電動獨輪車。為完成電動獨輪車的平衡控制之目標,我們設計了一個自我平衡控制器,利用傳統倒單擺控制之概念,以車身傾斜之角度與角速度當作控制變數,主動控制馬達的出力達到獨輪車直立不倒之目的。本論文中,我們主要提出了兩種控制演算法來分別做比較,其中包含模糊控制器及適應性模糊控制器。傳統模糊理論之模糊規則是藉由使用者經驗所設計,故對於控制非線性系統,是一簡單、好設計之控制理論。然而,此電動獨輪車存在著許多不確定之因素及雜訊,會影響系統動作,為了解決此問題,我們將使用適應性模糊控制器,其中適應性模糊控制器之歸屬函數型態為高斯函數,並藉由李亞普諾夫定理(Lyapunov theory)推導其學習速率且以達誤差之收斂;因此於本系統中我們將使用適應性模糊控制器來當系統主控制器。最後,我們也將透過電動獨輪車平台之模擬與實驗,分別比較模糊控制器與適應性模糊控制器之模擬與實驗結果,驗證了適應性模糊控制器因能調整學習速率使誤差快速收歛,故在平衡與控制上能有較佳的成效。

In this thesis, we design and implement an electric unicycle vehicle. In this thesis, we compared two control algorithms including traditional fuzzy controller and adaptive fuzzy controller. For nonlinear systems, the traditional fuzzy is a control theory that is simple and good design. Its rule table can be designed by user experience. However, there are many uncertain noise and factors that the system motion can be affected in the electric unicycle. In order to solve these problems, we use adaptive fuzzy controller, where the membership function of adaptive fuzzy controller is Gaussian function. The parameters of fuzzy membership functions are adjusted online using the gradient descent method. The learning rates of the controller are determined using an analytical method based on a Lyapunov function, such that system convergence is achieved. The variable and optimal learning rates are derived to achieve rapid tracking-error convergence. Finally, by the simulation and experimentation of electric unicycle vehicle, we compare the fuzzy controller and adaptive fuzzy controller, respectively. From the results, the adaptive fuzzy controller can be demonstrated that it has better performance for control and balance.

書頁名.....................................................I
中文摘要...................................................II
英文摘要..................................................III
誌謝......................................................IV
目錄.......................................................V
圖目錄....................................................IX
表目錄...................................................XIII
第一章 簡介.................................................1
1.1 前言.................................................1
1.2 研究背景與目的.........................................1
第二章 電動獨輪車系統.........................................6
2.1 電動獨輪車之硬體架構....................................6
2.1.1 直流馬達..........................................9
2.1.2 編碼器...........................................10
2.1.3 傾斜計、陀螺儀....................................10
2.1.4 類比轉數位電路....................................11
2.1.5 濾波電路.........................................12
2.1.6 馬達驅動電路......................................13
2.1.7 C8051F120 發展板.................................14
2.2 電池與系統電源........................................16
2.2.1 電池............................................16
2.2.2 電源轉換電路......................................17
第三章 電動獨輪車系統狀態及行動決策.............................18
3.1 系統分析.............................................18
3.2 動作描述.............................................20
3.3 行動決策.............................................21
第四章 傳統模糊控制器........................................23
4.1 概論................................................23
4.2 模糊平衡控制器之設計...................................23
4.3 PD 定位控制器之設計...................................25
4.4 模擬與實驗結果........................................26
4.4.1 模擬............................................26
4.4.1.1 平衡控制模擬結果..............................27
4.4.1.2 外在干擾控制模擬結果...........................29
4.4.1.3 原地定位控制模擬結果...........................30
4.4.2 實驗........................................... 33
4.4.2.1 原地平衡控制實驗結果.......................... 33
4.4.2.2 前進定位控制實驗結果.......................... 37
4.4.2.3 後退定位控制實驗結果.......................... 40
4.4.2.4 外在干擾控制實驗結果.......................... 44
第五章 適應性模糊控制器..................................... 48
5.1 概論............................................... 48
5.2 高斯型模糊平衡控制器之設計............................. 48
5.3 模糊系統之線上學習演算法與收斂分析....................... 50
5.3.1 線上學習演算法................................... 50
5.3.2 收斂分析........................................ 52
5.4 模擬與實驗結果....................................... 53
5.4.1 模擬........................................... 53
5.4.1.1 平衡控制模擬結果............................. 53
5.4.1.2 外在干擾控制模擬結果.......................... 54
5.4.1.3 原地定位控制模擬結果.......................... 56
5.4.2 實驗........................................... 59
5.4.2.1 原地平衡控制實驗結果.......................... 59
5.4.2.2 前進定位控制實驗結果.......................... 63
5.4.2.3 後退定位控制實驗結果.......................... 66
5.4.2.4 外在干擾控制實驗結果.......................... 70
5.5 結論............................................... 73
第六章 總結............................................... 75
6.1 困難之處與解決方法................................... 75
6.2 改進方向........................................... 76
6.3 未來展望............................................. 76
參考文獻................................................. 77
附錄一、馬達規格........................................... 80
附錄二、傾斜計規格.......................................... 81
附錄三、陀螺儀規格.......................................... 82
附錄四、電池規格........................................... 83
附錄五、均值、變異數學習速率推導............................... 85

[1] Segway LLC, USA, http://www.segway.com
[2] Toyota-Winglet, http://www.carnews.com/detail/12687
[3] Toyota i-REAL, http://www.toyota.co.jp/en/autoshows/2007/tokyo/report/toyota/1017_3/index.html
[4] Toyota i-REAL, http://www.auto-online.com.tw/news/9-12521
[5] HANDA U3-X, http://chinese.autoblog.com/2009/09/26/honda-u3-x/
[6] EniCycle, http://enicycle.com/what.html
[7] EniCycle, http://taiwan.cnet.com/crave/0,2000088746,20140422,00.htm
[8] 概念獨輪摩托車-“大黃蜂”, http://www.43453.com/viewnews-9793.html
[9] Klaus Hofer, 28V-DREHSTROMANTRIEB BFU ELEKTROFAHRZEUGE, 2005.
[10] Hofer, K., “Electric Vehicle on one Wheel,” Vehicle Power and Propulsion, IEEE Conference, pp. 517-521, Sept. 2005.
[11] Hofer, K., “Stabilization of an IP-Vehicle,” Industrial Technology, IEEE Conference, pp. 1103-1108, 14-17 Dec. 2005.
[12] L. A. Zadeh, “Fuzzy Sets”, Information and Control, Vol. 8, pp. 338-353, 1965.
[13] R. J. Wai and J. D. Lee, “Robust Levitation Control for Linear Maglev Rail System Using Fuzzy Neural Network”, IEEE Trans. Control Syst. Technol., Vol. 17, No. 1, pp.
4-14, Jan., 2009.
[14] R. J. Wai and C. M. Liu, “Design of Dynamic Petri Recurrent Fuzzy Neural Network and Its Application to Path-Tracking Control of Nonholonomic Mobile Robot”, IEEE Trans. Ind. Electron., Vol. 56, No. 7, pp. 2667-2683, July, 2009.
[15] G. Antonelli, S. Chiaverini, and G. Fusco, “Robust Fuzzy-Neural Sliding-Mode Control Design Via Network Structure Adaptation”, IET Control Theory Appl., Vol. 2,
No. 2, pp. 211-221, Apr., 2007.
[16] P. Z. Lin, C. F. Hsu, T. T. Lee, and C. H. Wang, “A Fuzzy-Logic-Based Approach for Mobile Robot Path Tracking”, IEEE Trans. Fuzzy Syst., Vol. 15, No. 12, pp. 1054-1065, Apr., 2008.
[17] S. Tong, X. He, Y. Li and H. Zhang, “Optimized Fuzzy PD Cascade Controller: A Comparative Analysis and Design”, Simulation Modelling Practice and Theory, pp. 181-195, 2011.
[18] KING RIGHT MOTOR Corporation, http://www.kingright.com.tw/
[19] Agilent Technology Corporation, http://www.home.agilent.com/
[20] Crossbow Technology, Inc., http://www.xbow.com/
[21] 蔡文儒撰「全方位球型機器人之設計與實現:使用具強健性之模糊監督控制器」中原大學電機工程研究所,碩士論文,2009年(邱智煇、涂世雄指導)。
[22] SILICON LABS, http://www.silabs.com/Pages/default.aspx
[23] 唐義欣撰「以嵌入式平台實現人型機器人之自主行走系統」中央大學資訊工程研究所,碩士論文,2007年(蘇木春指導)。
[24] L. X. Wang, Adaptive Fuzzy System and Control: Design and Stability Analysis,
Prentice-Hall, NJ, 1994.
[25] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, NJ, 1991.
[26] 陳威宇撰「兩輪機器人自我平衡控制之設計與實現」,清雲科技大學電子工程研究所,碩士論文,2004年 (邱智煇指導) 。
[27] 鄭鈞元撰「兩輪自我平衡機器人之平衡控制」中央大學電機工程研究所,碩士論文,2003年(王文俊指導)。
[28] 王禎祥撰「兩輪自我平衡機器人之前後行走控制」中央大學電機工程研究,碩士論文,2003 年(王文俊指導)。
[29] 王文俊,認識Fuzzy,全華科技圖書,民國九十年。
[30] 江東穎撰「兩輪式智慧型機器人之設計與實現」中國文化大學數位機電科技研究所,碩士論文,2009 年(蘇國和指導)。
[31] S. Jung, and S. S. Kim, “Control Experiment of a Wheel-Driven Mobile Inverted Pendulum Using Neural Network”, IEEE Trans. Control Syst. Technol., Vol. 16, No. 2, pp. 297-303, March, 2008.
[32] F. Grasser, A. D''Arrigo, S. Colombi, and A.C. Rufer, “JOE: A Mobile ,Inverted Pendulum”, IEEE Trans. Ind. Electron., Vol. 49, No. 1, pp. 107-114, Feb., 2002.
[33] S. C. Tong, X. L. He and H. G. Zhang, “A Combined Backstepping and Small-Gain Approach to Robust Adaptive Fuzzy Output Feedback Control”, IEEE Trans. Fuzzy Syst., Vol. 17, No. 5, pp. 1059-1069, Oct., 2009.
[34] S. Tong, X. He, Y. Li and H. Zhang, “Adaptive Fuzzy Backstepping Robust Control
for Uncertain Nonlinear Systems Based on Small-Gain Approach”, Fuzzy Sets and Systems, pp. 771-796, 2010.
[35] Y. S. Huang, D. S. Xiao, X. X. Chen, Q. X. Zhu and Z. W. Wang, “H-infinite Tracking –Based Decentralized Hybrid Adaptive Output Feedback Fuzzy Control for a Class of Large-Scale Nonlinear Systems”, Fuzzy Sets and Systems, pp. 72-92, 2011.
[36] Y. J. Liu, W. Wang, S. C. Tong and Y. S. Liu, “Robust Adaptive Tracking Control for Nonlinear Systems Based on Bounds of Fuzzy Approximation Parameters”, IEEE Trans. Syst., Man, Cybern. Part A-Syst. Hum., Vol. 35, No. 6, pp. 170-184, Jan., 2010.
[37] C. C. Ku and K. Y. Lee, “Diagonal Recurrent Neural Network for Dynamic Systems Control”, IEEE Trans. Neural Netw., Vol. 6, No. 1, pp. 144-156, Jan., 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔