(35.175.212.130) 您好!臺灣時間:2021/05/18 03:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳弘偉
研究生(外文):Hung-Wei Wu
論文名稱:雙旋轉翼系統之PID模糊滑動控制
論文名稱(外文):PID Fuzzy Sliding Mode Control of the Twin Rotor Multi-Input Multi-Output System
指導教授:黃英哲黃英哲引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:80
中文關鍵詞:PID控制滑動控制模糊控制雙旋轉翼系統
外文關鍵詞:PID controlsliding mode controlfuzzy controlTwin Rotor Multi-Input Multi-Output System (TRMS)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文採用PID滑動控制和模糊之觀念為控制系統設計主軸,對雙旋轉翼多輸入多輸出系統(TRMS)定位控制設計PID模糊滑動控制器。在控制TRMS之前將TRMS解耦合且分成主旋翼系統與尾旋翼系統,再使用三種控制器─滑動控制、PID控制、PID模糊滑動控制,對TRMS做模擬。首先,以滑動控制對TRMS做模擬,滑動控制可以快速達到目標,但由實驗結果得知它有追蹤誤差及抖振的問題,另外也引用邊界層的觀念解決抖振的問題。接著,模擬PID控制對TRMS的情況,且將PID控制的參數結合模糊滑動控制,最後比較三種控制各別對主旋翼系統與尾旋翼系統的控制結果,實驗結果驗證PID模糊滑動控制有較好的表現。

In this thesis, a PID Fuzzy Sliding mode control is adopted to control the Twin Rotor Multi-Input Multi-Output (TRMS). The TRMS is decoupled and composed of a main rotor system and a tail system. The simulations include three controllers, sliding mode controller, PID controller, PID Fuzzy Sliding mode controller. The first controller demonstrates the sliding mode control performance for TRMS. The sliding mode control can reach the control objective, but it exists chattering problem and tracking errors. Then the boundary layer is adopted to reduce the chattering phenomenon. The second controller indicates the PID control performance. The third controller shows PID Fuzzy Sliding mode control with the same PID parameters. Finally, the PID Fuzzy Sliding mode controller to the main rotor and the tail rotor has neither the chattering phenomenon nor the tracking errors.

Chinese abstract i
Abstract ii
Acknowledgment iii
Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature review 2
Chapter 2 System description 4
2.1 Description of Twin Rotor Multi-input Multi-output System 4
2.2 Mathematical model 6
2.2.1 Non-linear functions of angular velocities relationship to the input voltage of the DC motor 6
2.2.2 Horizontal axis of rotation in the vertical plane 7
2.2.3 Vertical axis rotation in the horizontal plane 11
2.2.4 The system dynamic equation 15
Chapter 3 Control method 18
3.1 Introduction to PID control 18
3.2 Introduction to sliding mode control 21
3.3 Introduction to fuzzy control theory 23
3.3.1 Structure of fuzzy logic control 24
3.3.2 Fuzzification 25
3.3.3 Fuzzy rule base 26
3.3.4 Fuzzy inference engine 27
3.3.5 Defuzzification 28
Chapter 4 Sliding mode control 30
4.1 Linearization 30
4.2 Design of sliding mode control 32
4.2.1 Design of the tail rotor system 33
4.2.2 Design of the main rotor system 35
4.3 Simulation of the sliding mode control 37
4.3.1 Step responses of the TRMS with SMC(sign) 39
4.3.2 Sine wave responses of the TRMS with SMC(sign) 43
4.3.3 Step responses of the TRMS with SMC(sat) 47
4.3.4 Sine wave responses of the TRMS with SMC(sat) 51
Chapter 5 PID control and PID fuzzy sliding mode control 55
5.1 PID control 55
5.1.1 Step responses of the TRMS with PID controller 56
5.1.2 Sine wave responses of the TRMS with PID controller 59
5.2 PID fuzzy sliding mode control 62
5.2.1 Step responses of the TRMS with PID fuzzy sliding mode controller 65
5.2.2 Sine wave responses of the TRMS with PID fuzzy sliding mode controller 70
Chapter 6 Conclusions 76
References 77


[1] J. G. Juang, W. K. Liu, and C. Y. Tsai, “Intelligent control scheme for twin rotor MIMO system,” Proceedings of the 2005 IEEE International Conference on Mechatronics, ICM ''05 , vol. 2005, pp. 102-107, 2005.
[2] J. G. Juang, M. T. Huang, and W. K. Liu, “PID control using presearched genetic algorithms for a MIMO system,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 38, no. 5, pp. 716-727, 2008.
[3] T. K. Liu and J. G. Juang, “A single neuron PID control for twin rotor MIMO system,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, pp. 186-191, 2009.
[4] C. W. Tao, J. S. Taur, and Y. C. Chen, “Design of a parallel distributed fuzzy LQR controller for the twin rotor multi-input multi-output system,” Fuzzy Sets and Systems, vol. 161, no. 15, pp. 2081-2103, 2010.
[5] C. W. Tao, J. S. Taur, Y. H. Chang, and C. W. Chang, “A novel fuzzy-sliding and fuzzy-integral-sliding controller for the twin-rotor multi-inputmulti-output system,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 893-905, 2010.
[6] C. S. Liu, L. R. Chen, B. Z. Li, S. K. Chen, and Z. S. Zeng, “Improvement of the twin rotor MIMO system tracking and transient response using fuzzy control technology,” 2006 1st IEEE Conference on Industrial Electronics and Applications, 2006.
[7] A. Rahideh and M. H. Shaheed, “Hybrid fuzzy-PID-based control of a twin rotor MIMO system,” IECON Proceedings (Industrial Electronics Conference), pp. 49-54, 2006.
[8] X. Dong, X. Zhao, and M. Shu, “Research of control method based on 3-DOF twin rotor MIMO system,” Proceedings of the World Congress on Intelligent Control and Automation (WCICA), pp. 3279-3283, 2008.
[9] P. Wen and T. W. Lu, “Decoupling control of a twin rotor MIMO system using robust deadbeat control technique,” IET Control Theory and Applications,vol. 2, no. 11, pp. 999-1007, 2008.
[10] A. Rahideh and M. H. Shaheed, “Robust model predictive control of a twin rotor MIMO system,” IEEE 2009 International Conference on Mechatronics, ICM 2009, 2008.
[11] S. F. Toha and M. O. Tokhi, “A hybrid control scheme for a twin rotor system with multi objective genetic algorithm,” UKSim2010 - UKSim 12th International Conference on Computer Modelling and Simulation, pp. 110-115, 2010.
[12] B. Pratap and S. Purwar, “Sliding mode state observer for 2-DOF twin rotor MIMO system,” ICPCES 2010 - International Conference on Power, Control and Embedded Systems, 2010.
[13] Feedback Instruments Ltd., Twin Rotor MIMO System Advanced Technique Manual 1, 1997.
[14] J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” Trans. ASME, pp. 759-768, 1942.
[15] T. H Chang, PID control theory and practice, Chuan Hwa Book Co., Lts., Taipei, 1995.
[16] M. D. Huang, Genetic Algorithm Based PID Control for a Nonlinear Twin Rotor Multi-Input Multi-Output System. Master Thesis, National Taiwan Ocean University, Department of Communications Navigation and Control Engineering, 2002.
[17] V. I. Utkin, J. Guldner, and J. Shi, sliding mode control in electro-mechanical systems. Taylor & Francis Group, London, 2009.
[18] V. I. Utkin, Sliding Modes and Their Application in Variable Structure systems. MIR publishers, Moscow, 1978.
[19] Y. P. Chen and J. L. Chang, Variable Structure System(Revised Edition). Chuan Hwa Book Co., Lts., Taipei, 2002.
[20] L. X. Wang, A course in fuzzy systems and control. Prentice Hall PTR, Upper Saddle River NJ, 1997.
[21] Z. Y. Sun and Y. G. Yang, Fuzzy Control Theory,Implementation and Application(Revised Edition), Chuan Hwa Book Co., Lts., Taipei, 2005.
[22] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control. A survey,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2-22, 1993.
[23] C. W. Tao, M. L. Chan, and T. T. Lee, “Adaptive fuzzy sliding mode controller for linear systems with mismatched time-varying uncertainties,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 33, no. 2, pp. 283-294, 2003.
[24] C. W. Tao, J. S. Taur, and M. L. Chan, “Adaptive Fuzzy Terminal Sliding Mode Controller for Linear Systems with Mismatched Time-Varying Uncertainties,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 1, pp. 255-262, 2004.
[25] J. J. Slotine and S. S. Sastry, “Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators,” International Journal of Control, vol. 38, no. 2, pp. 465-492, 1983.
[26] A. Bagheri and J. J. Moghaddam, “Decoupled adaptive neuro-fuzzy (DANF) sliding mode control system for a Lorenz chaotic problem,” Expert Systems with Applications, vol. 36, no. 3 PART 2, pp. 6062-6068, 2009.
[27] V. Parra-Vega, S. Arimoto, Y. H. Liu, G. Hirzinger, and P. Akella “Dynamic sliding PID control for tracking of robot manipulators: Theory and experiments,” IEEE Transactions on Robotics and Automation, vol. 19, no. 6, pp. 967-976, 2003.
[28] D. Muro-Maldonado, A. Rodríguez-Ángeles, and C. A. Cruz-Villar “Sliding PID control for trajectory tracking of a 2 DOF robot manipulator: Simulations and experiments,” 2007 4th International Conference on Electrical and Electronics Engineering, ICEEE 2007, pp. 302-305, 2007.
[29] R. Kikuuwe, S. Yasukouchi, H. Fujimoto, and M. Yamamoto “Proxy-based sliding mode control: A safer extension of PID position control,” IEEE Transactions on Robotics, vol. 26, no. 4, pp. 670-683, 2010.
[30] Y. Li and Q. Xu “Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator,” IEEE Transactions on Control Systems Technology, vol. 18, no. 4, pp. 798-810, 2010.
[31] L. X. Wang, “Fuzzy systems are universal approximators,” Proceeding of IEEE International Conference of Fuzzy Systems, pp. 1163-1170, 1992.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top