(3.236.118.225) 您好!臺灣時間:2021/05/16 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃嘉彥
研究生(外文):Jia-Yann Huang
論文名稱:電腦輔助系統在核子醫學的實踐
論文名稱(外文):Implementations of Novel Computer-Aided System in Nuclear Medicine Practice
指導教授:陳永盛陳永盛引用關係
學位類別:博士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:111
中文關鍵詞:核子醫學模糊集合閥值判定適應性閥值判定雙亮度影像對比強化
外文關鍵詞:Nuclear medicineFuzzy sets histogram thresholdingAdaptive thresholdingIntensity-pair image contrast enhancement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
核子醫學影像有多種類別,包含平面掃描影像,單光子射出電腦斷層影像和正子斷層掃描影像等,檢查前先給病人少劑量的放射性藥物再進行攝影,觀察放射性藥物在人體內的吸收特性,以了解病人的生理狀態。攝影完成後,核子醫學醫師藉由目視檢查閃爍掃描影像所提供的資訊,以了解病人的組織、器官、器官系統生理狀況,而且在臨床運作和研究上,經由量化所得的資料,更可以用來觀查病患生化和生理上有意義的變化過程。
由於最近核醫掃描成像技術的大幅進步,使核醫解剖性影像,功能性影像,動態影像的造影過程有很大的改善。但由於核醫成像的光子統計特性差,只能產生低解析度的影像而且需要相對較長的掃描時間。基於這些缺點,核醫低解析度影像需要一些電腦輔助系統幫助核子醫學醫師在檢視影像時,能更加確定判斷影像中不正常的位置。在本論文中,我們提出四個核子醫學電腦輔助系統即核子醫學全身骨骼掃描電腦輔助自動診斷系統,核醫骨骼掃描電腦輔助全自動測量腸關節與薦椎對放射性同位素的攝取比,腎絲球過濾率檢查腎動態影像電腦輔助全自動腎臟區域圈選,核醫放射碘平面影像電腦輔助全自動測量葛瑞夫茲氏病甲狀腺體積。四個電腦輔助系統演算法的構成主要是以模糊集合影像灰階分佈圖閥值判定,適應性閥值判定法,解剖知識為基礎的影像分割方法,雙亮度影像對比強化方法及形態學處理方法所組成。實驗結果證明我們所提出的演算法是可信賴的,希望可運用在臨床上,幫助核子醫學醫師對低解析度閃爍影像的判讀。


Nuclear medicine imaging, including planar scintigraphy, single photon emission computed tomography (SPECT), and positron emission tomography (PET), relies upon the tracer principle, in which a slight quantity of a radiopharmaceutical is administered into the body to monitor the patient’s physiological condition. Practically, scintigrams are interpreted visually to assess the physiological condition of tissues, organs, and organ systems, moreover, can be estimated quantitatively to survey biochemical and physiological processes of significance in both clinical practices and research.
Recent advances in radionuclide imaging systems have resulted in important improvements in the fields of anatomical, functional, and dynamic imaging procedures. But, radionuclide images inherently have poor photon statistics, are produced with only modest spatial resolution, and need relatively long scan time. As the disadvantages mentioned about, the low spatial resolution scintigrams required some computer-aided systems for helping nuclear physicians to identify the abnormalities in the interpretation procedure. In this thesis, our computer-aided system is divided into four sub-systems: computer-aided diagnosis in nuclear medicine whole body bone scan images, computer-aided sacroiliac joint index analysis for bone scintigraphy, region of interest selection in glomerular filtration rate estimation from 99mTc-DTPA renogram, and thyroid volume estimation in Graves’ disease using radioiodine planar scintigrams. These sub-systems are based on anatomy knowledge-based segmentation method, fuzzy sets histogram thresholding, adaptive thresholding, intensity-pair image contrast enhancement, and morphological operations. Experimental results reveal the superior performance in these sub-systems; we expect that these computer-aided systems may be applied to help nuclear medicine physicians in clinical practice.


摘 要....…………………………….……………….…………………………...……..i
Abstract………..……………………………………….…….……………...………...ii
誌 謝…..……..………………………………………..…………………….…..……iv
List of Figure…………………………………………………………...……………..ix
List of Table…………………………………………………………...………….…xiv
Chapter 1 Introduction……………………….………………………………………..1
1.1 Nuclear Medicine Imaging………..…………………………………………2
1.1.1 The Anger Scintillation Camera…...........………..…...…..........….…..2
1.1.2 Position Emission Tomography..………………..………..……..……..4
1.1.3 Computed Tomography………………………...…………..………….5
1.1.4 Dual-Modality Imaging Systems............................................................6
1.2 Clinical Scintigraphy………………………………………………….….…8
1.2.1 Cardiovascular System………………………………………………...8
1.2.2 Skeletal System………………………………………….…………….8
1.2.3 Pulmonary System…………………………………………………....10
1.2.4 Infection and Inflammation………………………………….……….10
1.2.5 Oncology………………………...………………………………...…11
1.2.6 Hepatobiliary System………………...………..……………………..11
1.2.7 Gastrointestinal System……….……………...………………………12
1.2.8 Central Nervous System………………..…………………………….12
1.2.9 Genitourinary System………………………….……………………..12
1.2.10 Endocrine System…………………………………………………..14
1.3 Review of Related Works………………………….………………….……14
1.3.1 Previous Methods for Computer-aided Diagnosis in nuclear medicine Whole Body Bone Scan Images………...…………………….….…..15
1.3.2 Previous Method for Computer-aided Sacroiliac Joint Index Analysis for Bone Scintigraphy……………….…….…………………….......16
1.3.3 Previous Methods for Region of Interest Selection in Glomerular Filtration Rate Estimation from 99mTc-DTPA Renogram…………...18
1.3.4 Previous Methods for Thyroid Volume Estimation in Graves’Disease Using Radioiodine Planar Scintigrams………………..……….……..19
1.4 Over view of Approach……………………………..……………...………21
1.4.1 Computer-Aided Diagnosis in Nuclear Medicine Whole Body Bone Scan Images……...….....………………………………………...…..21
1.4.2 Computer-Aided Sacroiliac Joint Index Analysis for Bone Scintigraphy……...…………………..…..……….……...………...22
1.4.3 Region of Interest Selection in Glomerular Filtration Rate Estimation from 99mTc-DTPA Renogram……………………………...………….22
1.4.4 Thyroid Volume Estimation in Graves’ Disease Using Radioiodine Planar Scintigrams……......…...…………………………..……...…23
1.5 Organization of the Dissertation…………………………………...………24
Chapter 2 Computer-Aided Diagnosis in Nuclear Medicine Whole Body Bone Scan Images……………………..……..……………….………………………26
2.1 Pre-processing……...……………..……………………………...………..26
2.2 Image Segmentation.……………..………………………………………..28
2.2.1 Histogram Thresholding Using Fuzzy Sets.......…………….….…..28
2.2.2 Locating the Reference Points..………………..…………….……..31
2.2.2.1 Locating the Neck Reference Points…………………..……32
2.2.2.2 Locating the Shoulder Reference Points...........................….33
2.2.2.3 Locating the Vertebra Reference Points………………..…....33
2.2.2.4 Locating the Pelvis Reference Points………………..……...34
2.2.2.5 Locating the Arm Reference Points…………………..……..35
2.2.3 Segmentation Based on the Reference Points ………………..…….35
2.2.3.1 Head Segmentation………………..…………………..….…36
2.2.3.2 Arms and Shoulder segmentation………………….….…….36
2.2.3.3 Pelvis Segmentation………………………………….….….37
2.2.3.4 Legs Segmentation………………………………….….…...38
2.2.3.5 Vertebra Segmentation……………………….............……..39
2.2.3.6 Trunk Segmentation……………………………………..….40
2.3 Lesion gray Level Determination………………….…….………….….…..42
2.4 Experimental Results………………….…………………………………...43
2.5 Summary………….………………….………………………………..…...48
Chapter 3 Computer-aided Diagnosis Sacroiliac Joint Index Analysis for Bone
Scintigraphy……………………..……..….….….………….……………49
3.1 Patients and Images..……………..……………….………..………..……..49
3.2 Pre-processing.…………………..……………….…………..…..………..50
3.3 Image Segmentation.………….….……………….………………………..52
3.3.1 Histogram Thresholding Using Fuzzy Sets.......………………….…..53
3.3.2 Morphological Operations…....………………..……………………..53
3.3.3 Locate Reference Points of Pelvis……………..……………………..54
3.3.3.1 Locate Vertebra Reference Points.……...………….…………55
3.3.3.2 Locate Pelvis Reference Points..........................................….55
3.3.4 Segmentation Based on the Reference Points ……………………….56
3.4 Fully Automatic SII Measurement..………………………………………..57
3.5 Experimental Results………………….…………………………………...57
3.6 Summary…………..………………….……………………………….…....61
Chapter 4 Region of Interest Selection in Glomerular Filtration Rate Estimation from 99mTc-DTPA Regiom……..……..….………..……………………………62
4.1 Patients and Images..……………..……………….………………………..62
4.2 Pre-processing……...……………..……………….………………...……..63
4.3 Image Contrast Enhancement...…..……………….………………………..68
4.4 Image Segmentation.……………..……………….………………………..70
4.5 Experimental Results………………….…………………………………...73
4.6 Summary………..………………….……………...…………………..…...79
Chapter 5 Thyroid Volume Estimation in Graves’ Disease Using Radioiodine Planar Scintigrams..……………..……..….….……………………….…………81
5.1 Patients and Images..……………..……………….………..………..……..82
5.2 Pre-processing………….………..……………….………………....……..82
5.3 Image Contrast Enhancement.………….…..…….…………..………...…..83
5.4 Image Segmentation…………...………………….…………...…………...83
5.4.1 Adaptive Image Threshing……………………….........………….…..83
5.4.2 Obtaining the Maximum and Area Data for each Thyroid Lobe ………………………………………………………………….85
5.5 Experimental Results…………….………….……………………………...88
5.6 Summary...………..………………….……………………………….…....88
Chapter 6 Discussion...……………..……..….….……………………..….…………97
Chapter 7 Conclusions and Future Work.…….….……………………..….………..100
7.1 Conclusions..……………..……………………….………..………..……100
7.2 Future Work.………….………..………………….………………....……101
References………………………………………………………………………..…102
Publication List…………………………………………………………...…………110


[1]B. H. Hasegawa, K. Iwata, K. H. Wong, “ Dual-modality imaging of function and physiology,” Acad. Radiol., Vol. 9, pp. 1305-1321, 2002.
[2]C. Schiepers, and C. K. Hoh, “Positron emission tomography as a diagnostic tool in oncology,” Eur. Radiol., Vol. 8, pp. 1481-1494, 1998.
[3]H. Zaidi, “Quantitative analysis in nuclear medicine imaging,” Singapore, Springer, 2006.
[4]http://www.njironline.org.
[5]G. T. Herman, “Fundamentals of computerized tomography: Image reconstruction from projection,” 2nd edition, Springer, 2009.
[6]D. W. Townsend, T. Beyer, T. M. Blodgett, “PET/CT scanners: a hardware approach to image fusion,” Semin. Nucl. Med., Vol. 33, pp. 193-204, 2003.
[7]D. W. Townsend, J. P. Carney, J. T. Yap, “PET/CT today and tomorrow,” J. Nucl. Med., Vol. 45, suppl., 1 4S-14S, 2004.
[8]O. Israel, Z. Keidar, G. Iosilevsky et al., “The fusion of anatomic and physiologic imaging in the management of patients with cancer,” Semin. Nucl. Med., Vol. 31, pp. 191-205, 2001.
[9]J. H. Thrall, H. A. Ziessman, “Nuclear medicine-The requisites,” America, Mosby, 2001.
[10]M. L. Brown, “The role of radionuclide in the patient with osteogenic sarcoma,” Seminars Roentgenol., Vol. 24, pp. 185–192, 1989.
[11]E. L. Robey and P. F. Schellhanner, “Solitary lesions on bone scan in genitourinary malignancy,” J. Urology, Vol. 132, No. 5, pp. 1000–1002, 1984.
[12]Y. E. Erdi, J. L. Humm, M. Imbriaco, H. Yeung, and S. M. Larson, “Quantitative bone metastases analysis based on image segmentation,” J. Nucl. Med., Vol. 38, No. 99, pp. 1401–1406, 1997.
[13]T. K. Yin and N. T. Chiu, “A computer-aided diagnosis for locating abnormalities in bone scintigraphy by a fuzzy system with a three-step minimization approach,” IEEE Trans. Med. Imag., Vol. 23, pp. 639–654, 2004.
[14]L. Sajn, M. Kukar, I. Kononenko, and M. Milˇcinski, “Computerized segmentation of whole-body bone scintigrams and its use in automated diagnostics,” Comput. Methods Programs Biomed., Vol. 80, pp. 47–55, 2005.

[15]M. Sadik, D. Jakobsson, F. Olofsson, M. Ohlsson, M. Suurkula, and L. Edenbrandt, “A new computer-based decision-support system for the interpretation of bone scans,” Nucl. Med. Commun., Vol. 27, No. 5, pp. 417–423, 2006.
[16]A. Hadi, P. Hickling, M. Brown, A. Al-Nahhas, “Scintigraphic evidence of effect of infliximab on disease activity in ankylosing spondylitis,” Rheumatology, Vol. 41, pp. 114–116, 2002.
[17]N. A. Dunn, B. H. Mahida, M. V. Merrick, G. Nuki, “Quantitative sacroiliac scintiscanning: a sensitive and objective method or assessing efficacy of nonsteroidal, anti-inflammatory drugs in patients with sacroiliitis,” Ann. Rheum. Dis., Vol. 43. pp. 157–159, 1984.
[18]B. C. Lentle, A. S. Russsell, J. S. Percy, F. I. Jackson, “The scintigraphic investigation of sacroiliac disease,” J. Nucl. Med. Vol. 18, No. 6, pp. 529–533, 1977.
[19]A. Ho, “Scintillation camera with multichannel collimators,” J. Nucl. Med. Vol. 5, pp. 515–531, 1964.
[20]S. D. Miron, M. A. Khan, E. J. Wiesen, I. Kushner, E. M. Bellon, “The value of quantitative sacroiliac scintigraphy in detection of sacroilitis,” Clin. Rheum. Vol. 2, No. 4, pp. 407–414, 1983.
[21]W. Y. Lin, S. J. Wang, “Influence of age and gender on quantitative sacroiliac joint scintigraphy,” J. Nucl. Med., Vol. 39, No. 7 pp. 1269–1272, 1998.
[22]A. Yildiz, F. Gungor, T. Tuncer, B. Karayalcin, “The evaluation of sacroiliitis using 99mTc-nanocolloid and 99mTc-MDP scintigraphy,” Nucl. Med. Comm., Vol.22, pp. 785–794, 2001.
[23]A.S. Levey, J. P. Bosch, T. Greene, N. Rogers, “Roth: A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation,” Ann. Intern. Med., Vol. 130, pp. 461-470, 1999.
[24]J. F. Klopper, U. Hauser, H. L. Atkins, U. C. Eckelman, “Richards P: Evaluation of 99mTc-DTPA for the measurement of glomerular filtration rate,” J. Nucl. Med., Vol. 13, pp. 107-110, 1972.
[25]G. L. Barbour, C. K. Crumb, C. M. Boyd, “Reeves RP, Rastogi SP, Patterson RM: Comparision of inulin, iothalamate and 99mTc-DTPA for measurement of glomerular filtration rate,” J. Nucl. Med., Vol. 17, pp. 317-320, 1976.

[26]W. N. Tauxe, F. T. Mather, W. F. Taylor, “Effective renal plasma flow: estimation from theoretical volumes of distribution of intravenously injected 131I-orthoiodohippurate,” Mayo. Clin. Proc., Vol. 46, pp. 524-531, 1971.
[27]M. D. Rehling, M. L. Moller, B. Thamdrup, J. O. Land, “Trap-Jensen J: Simultaneous measurement of renal clearance and plasma clearance of 99mTc-labelled diethylenetriamine-pentaacetate, 51Cr-labelled ethylenediamine tetraacetate and inulin in man,” Clin. Sci., Vol. 66, pp. 613-619, 1984.
[28]M. L. Cohen, “Radionuclide clearance techniques,” Semin. Nucl. Med., Vol. 4, pp. 23-28, 1974.
[29]M. A. McLeod, W. F. Sampson, A. S. Houston, “Urinary clearance of 113mIn-DTPA and 99mTc (sn) DTPA measured by external arm counting,” Urol. Res., Vol. 5, pp. 71-74, 1977.
[30]J. S Fleming, B. Ramsay, D. Waller, D. Ackery, “Measurement of glomerular filtration rate with a portable cadmium telluride detector,” Nucl. Med. Comm., Vol. 8, pp. 751-757, 1987.
[31]J. Jackson, P. W. Blue, N. Ghaed, “Glomerular filtration rate determined in conjunction with routine renal scanning,” Radiology, Vol. 154, pp. 203-205, 1985.
[32]G. F. Gates, “Glomerular filtration rate: Estimation from fractional renal accumulation of 99mTc-DTPA (stannous),” AJR, pp. 565-570, 1982.
[33]G. F. Gates, “Split renal function testing using 99mTc-DTPA. A rapid technique for determining differential glomerular filtration,” Clin. Nucl. Med., Vol. 8, pp. 400-405, 1983.
[34]G. F. Gates, “Computation of Glomerular filtration rate with 99mTc-DTPA, An in-house computer program,” J. Nucl. Med., Vol. 25, pp. 613-618, 1984.
[35]R. K. Halker, Y. Vhrem, J. R. Galt, et al., “Interoperator variability in quantization the MAG3 renal uptake based on semiautomated and manual regions of interest,” J. Ncucl. Med., Vol. 37, pp. 293, 1996.
[36]Y. Tomaru, T. Inoue, N. Oriuchi, K. Takahashi, K. Endo, “Semi-automated renal region of interest selection method using the double-threshold technique: inter-operator variability in quantitation 99mTc-MAG3 renal uptake,” Eur. J. Med., Vol. 25, pp. 55-59, 1998.
[37]W. J. Hornof, L. D. Cowgill, G. R. Conrad, P. Fisher, “Semiautomated renal region-of interest selection method: validation in a dog model,” Am. J. Physiol., Vol. 3, pp. 133-138, 1988.
[38]M. Yamashita, H. Yamagishi, M. Hashiba, M. Fujita, H. Nakahashi, “A trial of automatic kidney detection in a dynamic renal study,” Radioisotopes, Vol. 36, pp. 590-593, 1987.
[39]P. C. Jackson, M. Jones, C. E. Brimble, J. Hart, “The reduction of inter- and intra-observer variability for defining regions of interest in nuclear medicine,” Eur. J. Med., Vol. 11, pp. 186-189, 1985.
[40]Y. Inoue, K. Yoshikawa, N. Yoshikawa, T. Watanabe, S. Saegeki, Y. Kaneko, I. Yokoyama, K. Ohtomo, “Evaluation of renal function with 99mTc-MAG3 using semiautomated regions of interest,” J. Nucl. Med., Vol. 41, pp. 1947-1954, 2000.
[41]A. S. Huston, D.R.R. White, W.F.D. Sampson, M. A. Macleod, J. B. Pilkington,” “An assessment of two methods for generating automatic regions of interest,” Nucl. Med. Commum., Vol. 19, pp. 1005-1016, 1998.
[42]M. Samal, C. C. Nimmon, K. E. Britton, H. Bergmann, “Relative renal uptake and transit time measurements using functional factor images and fuzzy regions of interest,” Eur. J. Med., Vol. 25, pp. 48-54, 1998.
[43]G. S. Pant, R. Kumar, A. K. Gupta, et al., “Estimation of thyroid mass in Graves’ disease by a scintigraphy method,” Nucl. Med. Comm., Vol. 24, pp. 743-748, 2003.
[44]J. C. Harbert, Radioiodine therapy of hyperthyroidism, In: J.C. Harbert, W.C. Eckelmen, R.D. Neumann, eds. “Nuclear medicine diagnosis and therapy,” New York, Thieme Medical, pp. 951-973, 1987.
[45]I. Klein, B. V. Becker, G. S. Levey, “Treatment of hyperthyroid disease,” Ann. Intern. Med., Vol. 121, pp. 281-288, 1994.
[46]J. J. Farrar, A. D. Toft, “Iodine-131 treatment of hyperthyroidism: Current issues,” Clin. Endocrinol, Vol. 35, pp. 207-212, 1991.
[47]J. Kretschko, U. Wellner, Dosimetrie, Strahlenschutz, In: U. Büll, H. Schicha, H. J. Biersack, W. H. Knapp, C. Reiner, O. Schober, eds. Nuklearmedizin. Stuttgart, New York, Thieme, pp. 143-159, 1999.
[48]J. C. Harbert, Radioiodine therapy of hyperthyroidism, in: J. C. Harbert, ed. Nuclear Medicine Therapy, New York, Thieme medical, pp. 1-36, 1987.
[49]J. W. Isselt van, J.M.H Klert de, H.P.F. Koppeschaar, P. P. Rijk P. P. van, “Iodine-131 uptake and turnover rate vary over short intervals in Graves’ disease,” Nucl. Med. Comm., Vol. 21, pp. 609-616, 2000.
[50]A. Berghout, W. M. Wiersinga, N. J. Smits, et al., “Determination of thyroid volume as measured by ultrasonography in healthy adults in a non-iodine deficient area,” Clin. Endocrinol., Vol. 26, pp. 273-280, 1987.
[51]L. Hegedus, H. Perrild, L. R. Poulsen, et al., “The determination of thyroid volume by ultrasound and its relationship to body weight, age and sex in normal subjects,” J. Clin. Endocrinol. Metab., Vol. 56, pp. 260-263, 1987.
[52]L. Hegedus, J.M. Hansen, “High incidence of normal thyroid gland volume in patients with Graves’ disease,” J. Surg. Oncol., Vol. 2. pp. 335-340, 1993.
[53]M. Nakahara, M. Morita, S. Noguchi, et al., “A simple method for determining thyroid volume by ultrasonography,” Jap. J. Med. Ultrasonics, Vol. 20, No. 11, pp. 50-60,1993.
[54]N. Yokoyama, F. Nagayama, F. Kakezono, et al., “Determination of volume of the thyroid gland by a high resolution ultrasonic scanner,” J. Nucl. Med., Vol. 27, 1475-1479, 1986.
[55]W. Johannes, et al., Comparison of methods for thyroid volume estimation in patients with Graves’ disease, Eur. J. Nucl. Med. Mol. Imaging,” Vol. 30, No. 4, pp. 525-531, 2003.
[56]E. Himanka, L. Larsson, “Estimation of thyroid volume,” Acta. Radiol., Vol. 43, pp. 125-131, 1995.
[57]H. C. Allen, W. E. Goodwin, “The scintillation counter as an instrument for in-vivo determination of thyroid weight,” Radiology, Vol. 58, pp. 68-79, 1952.
[58]O. J. Tobias and R. Seara, “Image segmentation by histogram thresholding using fuzzy sets,” IEEE Trans. Image Process., Vol. 11, pp. 1457–1465, 2002.
[59]A. Kaufmann, “Introduction to the Theory of Fuzzy Subsets,” New York: Academic, 1975.
[60]A. Glassner, “Graphics filling algorithm,” IEEE Trans. Comp.Graph. Appl., Vol. 21, No. 1, pp. 78–85, 2001.
[61]J. M. Bland, D. G. “Altman, Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet, pp. 307–310, 1986.
[62]L. B. Sheiner, S. L. Beal, “Some suggestion for measuring predictive performance,” J. Pharmacokin. Biopharmaceut, Vol. 9, pp. 503–512, 1981.
[63]M. I. El-Desouki, R. S. Benjamin, “Diagnostic value of quantitative sacroiliac joint scintigraphy in brucellosis,” Clin. Nucl. Med., Vol. 24, No. 10, pp. 756–758, 1999.
[64]M. C. Davis, D. A. Tuner, J. R. Charters, H. E. Golden, A. Ali, E. W. Fordham, “Quantitative sacroiliac scintigraphy. The effect of method of selection of region of interest,” Clin. Nucl. Med., Vol. 9, No. 6, pp. 334–340, 1984.
[65]D. F. Battafarano, S. G. West, K. M. Rak, E. J. Fortenbery, A. E. Chantelois, “Comparison of bone scan, computed tomography and magnetic resonance imaging in thediagnosis of active sacroiliitis,” Seminars Arth. And Rheum., Vol. 23 No. 3, pp. 161–176, 1993.
[66]D. Dodig, Z. Domljan, S. Popovic, I. Simonovic, “Effect of imaging time on the values of the sacroiliac index,” Eur. J. Nucl. Med., Vol. 14, pp.504-506, 1988.
[67]W. Y. Lin, S. J. Wang, “The influence of two bone agents (99mTc-pyrophosphare and 99mTc-methylenediphosphonate) on quantitative sacroiliac joint scintigraphy,” Nucl. Med. Commun., Vol. 17 No. 12, pp. 1035–1038, 1996.
[68]A. Taylor, K. Thakore, R. Folks, R. Halkar, A. Manatung, “Background subtraction in Technetium-99m-MAG3 renography,” J. Nucl. Med., Vol. 38, pp. 74-79, 1997.
[69]Q. Li, C. L. Zhang, Z. L. Fu, R. F. Wang, Y. C. Ma, L. Zuo, “Development of formulae for accurate for accurate measurement of the glomerular filtration rate by renal dynamic imaging,” Nucl. Med. Comm., Vol. 28, pp. 407-413, 2007.
[70]M. Assadi, M. Eftekhari, M. Hozhabrosadati, M. Saghari, A. Ebrahimi, I. Nabipour, M. Z. Abbasi, D. Moshtaghi, M. Abbaszadeh, S. Assadi “Comparison of methods for determination of glomerular filtration rate: low and high-dose Tc-99m-DTPA renography, predicted creatine clearance method, and plasma sample method,” Urol. Nephrol., Vol. 40, pp. 1059-1065, 2008.
[71]P. J. Early, D. B. Sodee, “Principles and practice of nuclear medicine,” Mosby, MO, USA, 1994.
[72]O. Carisen, “Estimation in adults of the glomerular filtration rate in [99mTc]-DTPA renography – the rate constant method,” Alasbimn Journal, Vol. 6, No. 24, Article No AJ24-2, 2004.
[73]C. J. Jen, B. Hsieh, S. J. Wang, “Image enhancement contrast estimation base on intensity-pair distribution,” International Conference, Image Processing, Vol. 1, pp. 913-916, 2005.

[74]C. K Yeh, Y. S. Chen, W. C. Fan, Y. Y. Liao, “A disk expansion segmentation method for ultrasonic breast lesions,” Pattern Recognit. Vol. 42, pp. 596-606, 2009.
[75]A. Madabhushi, D. N. Metaxas, “Combining low-level, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions,” IEEE Trans. Med. Imaging, Vol. 22, pp. 155-169, 2003.
[76]S. M. John, W. B. Peter, A. H. James, “Methods for measuring GFR with Technetium-99m-DTPA: An analysis of several common methods,” J. Nucl. Med., Vol. 31, pp. 1211-1219, 1990.
[77]K. Itoh, S. Tsushima, E. Tsukamoto, N. Tamaki, “Reappraisal of single-sample and gamma camera methods for determination of the glomerular filtration rate with 99mTc-DTPA,” Ann. Nucl. Med., Vol. 14, pp. 143-150, 2000.
[78]G. S. Pant, R. Kumar, A. K. Gupta, et al., “Estimation of thyroid mass in Graves’ disease by a scintigraphy method,” Nucl. Med. Comm., Vol. 24, pp. 743-748, 2003.
[79]J. C. Harbert, “Radioiodine therapy of hyperthyroidism, In: J. C. Harbert, W. C. Eckelmen, R. D. Neumann, eds,” Nuclear medicine diagnosis and therapy, New York, Thieme Medical, pp. 951-973, 1987.
[80]I. Klein, B. V. Becker, G. S. Levey, “Treatment of hyperthyroid disease,” Ann. Intern. Med., Vol. 121, pp. 281-288, 1994.
[81]J. J. Farrar, A. D. Toft, “Iodine-131 treatment of hyperthyroidism: Current issues,” Clin. Endocrinol., Vol. 35, pp. 207-212, 1991.
[82]H. Jonsson, S. Mattsson, “Excess radiation absorbed dose from non-optimised radioiodine treatment of hyperthyroidism,” Radiat. Prot. Dosimetry, Vol. 108, pp. 107, 2004.
[83]M. G. Stabin, “The case for patient-specific dosimetry in radiobuclide therapy,” Cancer Biotherapy & Radiopharmaceuticals, Vol. 23, No. 3, pp. 273-284, 2003.
[84]A. C. Traino, F. D. Martino, M. Lazzeri, “A dosimetric approach to patient-specific radioiodine treatment of Graves’ disease with incorporation of treatment-induced changes in thyroid mass,” Med. Phys., Vol. 36, No. 7, pp. 2121-2127, 2004.
[85]A. Berghout, W. M. Wiersinga, N. J. Smits, et al., “Determination of thyroid volume as measured by ultrasonography in healthy adults in a non-iodine deficient area,” Clin. Endocrinol., Vol. 26, pp. 273-280, 1987.
[86]L. Hegedus, H. Perrild, L. R. Poulsen, et al., “The determination of thyroid volume by ultrasound and its relationship to body weight, age and sex in normal subjects,” J. Clin. Endocrinol. Metab., Vol. 56, pp. 260-263, 1987.
[87] L. Hegedus, J. M. Hansen, “High incidence of normal thyroid gland volume in patients with Graves’ disease,” J. Surg. Oncol., Vol. 2, pp. 335-340, 1993.
[88]M. Nakahara, M. Morita, S. Noguchi, et al., “A simple method for determining thyroid volume by ultrasonography,” Jap. J. Med. Ultrasonics, Vol. 20, No. 11, pp. 50-60, 1993.
[89]N. Yokoyama, F. Nagayama, F. Kakezono, et al., “Determination of volume of the thyroid gland by a high resolution ultrasonic scanner,” J. Nucl. Med., Vol. 27, pp. 1475-1479, 1986.
[90]M. C. Brown, R. Spencer, “Thyroid gland volume estimated by use of ultrasound in addition to scintigraphy,” Acta. Radiol. Oncol., Vol. 17, pp. 337-341, 1978.
[91]H. C. Allen, W. E. Goodwin, “The scintillation counter as an instrument for in-vivo determination of thyroid weight,” Radiology, Vol. 58, pp. 68-79, 1952.
[92]J. D. Foley, et al., “Computer graphics: Principles and practice in C,” Addison Wesley, 1992.
[93]E. Himanka, L. Larsson, “Estimation of thyroid volume,” Acta. Radiol., Vol. 43, pp. 125-131, 1995.
[94]W. Johannes, et al., “Comparison of methods for thyroid volume estimation in patients with Graves’ disease,” Eur. J. Nucl. Med. Mol. Imaging, Vol. 30, No. 4, pp. 525-531, 2003.
[95]R. Malago, M. D’Onofrio, M. Ferdeghini, et al., “Thyroid volume quantification comparative evaluation between conventional and volumetric ultrasonography,” J. Ultrasound Med., Vol. 27, No. 12, pp. 1727-1733, 2008.
[96] D. C. Crawford, M. A. Flower, B. E. Pratt, et al., “Thyroid volume measurement in thyrotoxic patients: comparison between ultrasonography and iodine-124 positron emission tomography,” Eur. J. Nucl. Med., Vol. 24, No. 12, pp. 1470-1478, 1997.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top