(3.235.191.87) 您好!臺灣時間:2021/05/13 03:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:白彥青
研究生(外文):Ian-Ching Bai
論文名稱:超高頻電池輔助式感測器系統整合之設計
論文名稱(外文):System Integration Design of a Battery-assisted UHF RFID Sensor
指導教授:吳紹懋
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:74
中文關鍵詞:超高頻射頻標籤系統溫度感測器電池輔助式
外文關鍵詞:UHF RFIDtemperature sensorEPC Gen2assist-battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文為整合無線感測器之設計,本系統結合RFID標籤電路與智慧型的感測器。為整合兩系統,設計一介面控制器使感測器能夠依協定傳輸資料至RFID標籤電路。RFID標籤電路依照EPC GEN2協定的標準設計,其操作在915MHz的ISM頻帶,為了能夠增加其操作的距離,且增加高解析度與精確度,RFID無線感測器的部分使用電池輔助式的設計,而RFID標籤電路本身則利用高頻汲能電路供電。且為了節省電池的電量,智慧型的感測器一般情況下維持睡眠的模式,在要求溫度感測器數據的時候,以一個特別的喚醒系統可啟動電池,進而提供感測器的電源,最終在台積電0.18為米標準製程下設計並製作完成,晶片面積為0.73x0.69mm2. 實驗與量測結果顯示出其資料傳輸速率從40 kbps 到 160kbps,最低的輸入功率則是-2dBm。而內部的震盪器可產生2.6MHz的穩定時脈,編碼器可正常的將數據編碼為FM0的格式。但解碼器與喚醒電路的量測結果並不正確,在第四章有詳細的討論,而解決辦法則在第五章提出。

In this thesis, an integration design of a wireless sensor is presented. The proposed system is composed of two major blocks, namely, the smart sensor and the passive RFID frontend. To integrate these two blocks, an interface controller and protocol is designed such that the digital data from the smart sensor can be transmitted to the interrogator through the RFID frontend. The RFID frontend conforms to the EPC GEN2 standard, operating in the 915MHz band. In the aspect of the power source, the proposed RFID wireless sensor is battery-assisted such that the power for the RFID circuit is harvested from the RF wave while smart sensor are powered by a battery in order for high resolution and accuracy. In order to conserve the battery energy, nonetheless, the smart sensor generally stays in the sleeping mode; a special wake-up mechanism is equipped to turn on the circuit as soon as the request for temperature sensing is received. The overall system is implemented in the TSMC 0.18um MM/RF CMOS 1P6M standard process in an area of 0.73 × 0.69 mm2. Experimental results show that the data rate ranges from 40 to 160kb/s, the minimum input power is as low as -2dBm. The local oscillator produces 2.6MHz for data transmission clock. The backscatter encoder can encode the data format in FM0 correctly. The decoder and the wake-up circuit cannot work correctly, and the reasons are discussed in Chapter 4. The problem resolution is proposed in Chapter 5.

List of Contents

Chinese Abstract i
English Abstract ii
List of Contents iii
List of Table v
List of Figure vi

Chapter 1 Introduction 1
1.1. Background and Applications 1
1.2. Motivation (RFID Sensor and Sensor Network) 5
Chapter 2 System Architecture and Building Blocks 7
2.1. System Architecture 7
2.2. System Design Considerations 9
2.3. RF-to-DC Power Harvesting 9
2.3.1. Rectifier 9
2.3.2 Limiter 13
2.3.3. Full Wave Rectifier 14
2.4. Voltage Regulator 16
2.5. Demodulator 20
2.6. Modulator 24
2.7. Oscillator 26
Chapter 3 UHF RFID Encoder, Decoder, Interface Design Principle and Simulation 31
3.1. Wake-up Mechanism 31
3.2. Standard of EPC Global Gen 2 Communications 40
3.3. Decoding 44
3.4. Encoding 48
3.5 Interface 52
Chapter 4 Testing and Experimental Measurements 56
4.1. Testing Consideration 56
4.1.1. Die Micrograph 57
4.1.2. Testing Environment 59
4.2. Setup and Measurement Results 62
4.2.1. Receiving Decoding 62
4.2.2. Backscattering Encoding 64
Chapter 5 Conclusion and Future Work 66
5.1. Conclusion 66
5.2. Future Work 69



[1]K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd ed. Chicester, Sussex, U.K.: Wiley, 2003.
[2]R. Glidden, C. Bockorick, S. Cooper, C. Diorio, D. Dressler, V. Gutnik, C. Hagen, D. Hara, T. Hass, T. Humes, J. Hyde, R. Oliver, O. Onen, A. Pesavento, K. Sundstrom, and M. Thomas, “Design of ultra-low-cost UHF RFID tags for supply chain applications,” IEEE Commun. Mag., vol. 42, no. 8, pp. 140–151, Aug. 2004.
[3]N. Cho, S.-J. Song and J.-Y. Lee, "A 8-μW, 0.3-mm2 RF-powered transponder with temperature sensor for wireless environmental monitoring," IEEE Circuits and Systems symposium, vol 5, pp. 4763-4766, May. 2005
[4]L. Gu and J. Stankovic, "Radio-triggered wake-up capability for sensor networks," Real-Time and Embedded Technology and Applications Symposiumm, pp. 27- 36, May 2004.
[5]X. Stromberg, G. Gsottberger, Y. Sturm, "Wake-up-frame scheme for ultra low power wireless transceivers," Global Telecommunications Conference, vol. 6, pp. 3619- 3623, Dec. 2004
[6]W. Che, Y. Yang, C. Xu, N. Yan, X. Tan, Q. Li, H. Min, J. Tan, "Analysis, design and implementation of semi-passive Gen2 tag," RFID, 2009 IEEE International Conference on , pp. 15-19, April 2009
[7]EPC Class 1 Generation 2 UHF Air Interface Protocol Standard Version 1.2.0
[8]Impinj, “Gen 2 tag clock rate – What You Need to Know”, Impinj®, Inc.
[9]R. Barnett and J. Liu, “A 0.8V 1.52MHz MSVC relaxation oscillator with inverted mirror feedback reference for UHF RFID,” in Proc. IEEE CICC, pp. 769–772, Sep. 2006.
[10]C. Lin, Analysis and Design of Efficient RF-DC Rectifier for UHF Power Harvester, Yuan-Ze University, 2010.
[11]J. Yin, J. Yi, M. K. Law, Y. Ling, M. C. Lee, K. P. Ng, B. G. Luong, H. C. Bermak, A. M. Chan, W.-H. Ki, C.-Y. Tsui, M. Yuen, "A System-on-Chip EPC Gen-2 Passive UHF RFID Tag With Embedded Temperature Sensor," Solid-State Circuits, IEEE Journal , vol. 45, no. 11, pp. 2404-2420, Nov. 2010
[12]C. Klapf, A. Missoni, W. Pribyl, G. Holweg and G. Hofer, “Analyses and design of low power clock generators for RFID TAGs,” Research in Microelectronics and Electronics, 2008. PRIME 2008. Ph.D., pp. 181-184, 2008.
[13]C. Klapf, A. Missoni, W. Pribyl, G. Holweg and G. Hofer, “A Triple-Band Passive RFID Tag,” IEEE J. Solid-State Circuits, pp. 288-614, 2008.
[14]J. Curty, M. Declercq, C. Dehollain and N. Joehl, DESIGN AND OPTIMIZATION OF PASSIVE UHF RFID SYSTEMS, Springer, 2007.
[15]H. Shen, L. Li and Y. Zhou, “Fully Integrated Passive UHF RFID Tag with Temperature Sensor for Environment Monitoring,” ASIC, 2007. ASICON ’07. 7th International Conference on, pp. 360-363, Oct. 2007.
[16]U. Karthaus and M. Fischer, “Full integrated passive UHF RFID transponder IC with 16.7-,uW minimum RF input power,” IEEE J. Solid-State Circuits, vol. 38, pp. 1602-1608, Oct. 2003..
[17]G. Balachandran, and R. Barnett, “A Passive UHF RFID Transponder for EPC Gen 2 with -14dBm Sensitivity in 0.13um CMOS,” IEEE J. Solid-State Circuits, pp. 582-623, 2007.
[18]T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, S. Otaka, "A 950-MHz rectifier circuit for sensor network tags with 10-m distance," Solid-State Circuits, IEEE Journal of , vol. 41, no. 1, pp. 35-41, Jan. 2006.
[19]A. Shameli, A. Safarian, A. Rofougaran, M. Rofougaran, F. D. Flaviis, "Power Harvester Design for Passive UHF RFID Tag Using a Voltage Boosting Technique," Microwave Theory and Techniques, IEEE Transactions on, vol. 55, no. 6, pp.1089-1097, June 2007.
[20]F. Kocer, P. M. Walsh, M. P. Flynn, "Wireless, remotely powered telemetry in 0.25 μm CMOS," Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of Papers. 2004 IEEE , pp. 339-342, June 2004.
[21]P. E. Allen and D. R. Holberg, Radio Frequency Integrated COMS Analog Circuit Design. Oxford, U.K.: Oxford Univ. Press, 2002.
[22]H. Shen, L. Li, Y. Zhou, "Fully integrated passive UHF RFID tag with temperature sensor for environment monitoring," ASIC, 2007. ASICON ''07. 7th International Conference on , pp. 360-363, 22-25 Oct. 2007.
[23]H. Jianyun, H. Yan, M. Hao, “ High Efficient Rectifier Circuit Eliminating Threshold Voltage Drop for RFID Transponders,” The 6th International Conference on ASIC, vol. 2, pp. 607-610, Oct. 2005.
[24]C. Ma, C. Zhang, Z. Wang, “A Low-Powr AC/DC Rectifier for Passive UHF RFID Transponders,” IEEE 2007 Symposium on microwave, Antanna, Propagation, and EMC Technologies For Wireless Communications, pp. 309-314, Aug. 2007.
[25]J. Hu and H. Min, “A Low Power and High Performance Analog Front End for Passive RFID Transponder,” IEEE Workshop Automatic identification Advanced Technologies, pp. 199-204, Oct. 2005.
[26]N. Cho, S.-J. Song, S. Kim, S. Kim, H.-J. Yoo, "A 5.1-μW UHF RFID tag chip integrated with sensors for wireless environmental monitoring," Solid-State Circuits Conference, 2005. ESSCIRC 2005. Proceedings of the 31st European , pp. 279- 282, 2005.
[27]N. Soltani and F. Yuan, “An Autotransformer Impedance Transformation Technique for Efficient Power Harvesting of Passive Transponder s and Wireless Microsensors,” 51st Midwest Circuits and Systems Symp., pp. 755-758, Aug. 2008.
[28]F. Yuan and N. Soltani, “Design techniques for power harvesting of passive wireless microsensors,” 51st Midwest Symposium on Circuits and Systems, pp. 289 – 293, 2008.
[29]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. Cambridge, 2004.
[30]S. Wu, C. Jiang, C. Lin and S. Huang, “A Passive UHF RFID Front-end Design for Wireless Sensors,” IEEJ, Nov. 2009.
[31]A. Janek, C. Steger, R. Weiss, J. P. Pfluegl, M. Pistauer, "Lifetime extension of semi-passive UHF RFID tags using special power management techniques and energy harvesting devices," AFRICON 2007 , vol., no., pp.1-7, 26-28 Sept. 2007.
[32]Q. Luo, L. Guo, Q, Li, G. Zhang, J. Wang, "A low-power dual-clock strategy for digital circuits of EPC Gen2 RFID tag," RFID, 2009 IEEE International Conference on , pp.7-14, 27-28 April 2009.
[33]G. Balachandran and R. Barnett, “A 110nA Voltage Regulator System With Dynamic Bandwidth Boosting for RFID Systems,” IEEE J. Solid-State Circuits, vol. 41, pp. 2019-2028, Sep. 2006.
[34]Y. Yao, Y. Shi, and F. F. Dai, “A novel low-power input-independent MOS AC/DC charge pump,” Proc. of IEEE ISCAS, vol. 1, pp. 380-383, May 2005.
[35]R. J. Baker, H. W. Li, and D.E. Boyce, CMOS: Circuit Design, Layout, and Simulation, Wiley-IEEE Press, 1998.
[36]J.-P. Curty, N. Joehl, F. Krummenacher, C. Dehollain, M. J. Declercq, "A model for μ-power rectifier analysis and design," Circuits and Systems I: Regular Papers, IEEE Transactions on , vol. 52, no. 12, pp. 2771- 2779, Dec. 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔