跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/16 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊勝銘
研究生(外文):Sheng-Ming Chuang
論文名稱:軟性顯示器金屬基板研究開發
論文名稱(外文):Development of Stainless Steel Substrate for Flexible Display
指導教授:李碩仁李碩仁引用關係
指導教授(外文):Chi-Yuan Lee
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:57
中文關鍵詞:電化學機械拋光表面粗糙度非傳統加工
外文關鍵詞:electrochemical mechanical polishing, Surface roughness, unconventional machining
相關次數:
  • 被引用被引用:0
  • 點閱點閱:779
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
玻璃基材是目前最普遍之顯示器基材,但是玻璃高剛性之特性使其很難撓性化。目前市場上大部分都是以塑膠作為柔性電子基材,主要取其可撓性與表面平整性,但幾乎都是專利材料,價格貴供貨穩定性不佳。此外,塑膠不耐高溫,鍍膜需使用低溫製程,且本身阻水氣能力差,需增加阻絕層。金屬基材,其耐熱性遠高於塑膠材質,熱膨脹系數(CTE)與玻璃接近,可使用目前之高溫鍍膜製程,成本相對低溫製程低廉,亦無阻水氣的問題。
本研究以電化學微表面處理技術探討不銹鋼金屬表面的雜質層去除及粗糙度改善為應用,開發電化學機械拋光(Electrochemical Mechanical Polishing, ECMP)機台。主要設計為陽極治具與陰極磨頭機構,結合機械作用與電化學反應的加工。ECMP機台可以在 20分鐘之內,將 1 mm不鏽鋼 304表面粗糙度由Ra=0.05 μm降低到Ra=0.02 μm,改善不鏽鋼 304表面粗糙度不平均的問題。後續經由表面量測探討不銹鋼 304的表面粗糙度以及抗腐蝕性分析, 證實其可行性與未來機台改善目標。


The glass substrate is the most commonly used material for display products. The characteristics of high rigidity and brittleness make it difficult to be flexible. Although the ultra-thin glass is under development, its cost will not be able to meet the market requirement. Currently, the most popular materials of the substrate of flexible electronics are plastics. Most of these plastics materials are patented products. The prices of them are relatively high and the supply of the materials is sometimes unstable. In addition, the plastics can not suffer high temperature, so the coating processes are limited to lower temperature range. The water-blocking ability of plastics is poorer than metals, so the additional metal barrier layer is necessary to ensure the reliability of the products. For metal substrates, the affordability of high temperature is much better than it of plastics. The coefficient of thermal expansion (CTE) of metals is closer to the CTE of glasses than the CTE of plastics. The high temperature processes are possible for metal substrates. The cost of processes of using metal substrates is cheaper than the cost of using plastics substrates. There is also no water-blacking issue when using metal substrates.

In this study, the technique of electrochemical is applied to remove the impurities on the surface of SS304 specimen and to improve the surface roughness of the specimen. To develop an Electro-Chemical Mechanical Polishing (ECMP) machine is the first task in this study. The design of the ECMP machine needs to consider the fixture of the anode for the specimen of the size of 10 x 10 cm and the moving mechanism of the cathode to improve the process uniformity. By the effects of both mechanical polishing and electrochemical polishing, the ECMP machine can treat the SS304 specimen of the Ra of 0.05 μm before process down to the Ra of 0.02 μm after process within 20 minutes. By measuring the surface roughness of the specimens under different process parameters, the contributions for the process factors can be analysis by using Taguchi Method. The experimental results show the possibility of using ECMP to process the SS304 substrate to get high quality surface and let us understand the corrosion behavior of the SS304 substrate after treatment. Some other improvement objectives and possibilities are also discussed.


軟性顯示器金屬基板研究開發 I
審定書授權書 III
授權書 IV
中文摘要 V
ABSTRACT VI
誌 謝 VIII
表目錄 XI
圖目錄 XII
第一章 緒 論 1
1.1研究背景與動機 1
1.2 研究目標 8
1.3 論文架構 8
第二章 文獻回顧 10
2.1 文獻回顧 10
2.2 電化學機械拋光原理 19
第三章 研究架構與方法 22
3.1研究架構 22
3.2 實驗設備 22
3.2.1研磨機台改裝 23
3.3磨頭的設計開發 29
3.3.1設計概念 29
3.3.2磨頭設計 29
3.4實驗設計 31
3.5實驗機台驗證 31
第四章 電化學機械拋光製程加工精度提升研究 34
4.1 實驗設計與安裝規劃 34
4.2 實驗流程 36
4.2.1 田口數據分析結果 37
4.2.2 數據分析 38
4.2.3 驗證實驗 42
第五章 結論與未來展望 51
5.1 表面品質改善比較 51
5.2 結論 52
文獻參考 54


[1]Displaybank, “Flexible Display Technology and Market (2007~2017) ; report.” Sarah Han, 03/26/2007.
[2]陳信吉,蕭宗信,可撓性平面顯示器產品及製程設備介紹,機械工業雜誌,2005.09.
[3]usersbest.myweb.hinet.net/pdf/07-OLED.pdf
[4]Fang-Chung Chen, “Fabrication processes of organic light-emitting diodes report.” International Display Manufacturing Conference & Exhibition, July 3-6, 2007.
[5]T. K. Chuang and et al., “Flexible Display–AMOLED on Metal Foils,” Proc. SPIE 5801, 234 (2005); doi:10.1117/12.604222.
[6]J. A. Mc Gusseff, “Advanced methods of machining,” Chapman Hall, 1998.
[7]Charles L. Faust, “ElectropolishingⅠ:The practical side,” Metal Finishing, pp. 21-25, July, 1982.
[8]Charles L. Faust, “Electropolishing Ⅱ:The practical side,” Metal Finishing, pp. 59-63, august, 1982.
[9]Charles L. Faust, “Electropolishing– Stainless Steel Part Ⅰ,” Metal Finishing, pp. 53-56, February, 1983.
[10] Charles L. Faust, “Electropolishing–Stainless Steel Part Ⅱ,” Metal Finishing, pp. 35-37, March, 1983.
[11] C. O. A Olsson and D. Landolt, “Passive films on stainless steel–chemical,structure and growth,” Electrochimica Acta, vol. 48, pp. 1093-1104, 2003.
[12] P. Schmutz and D. Landolt, “In-situmicrogravimetric studies of passive alloys:potential and potential step experiments with Fe-25Cr and Fe-17Cr-33Mo in acid and alkaline solution ,” Corrosion Science, vol. 41, pp. 2143-2163, 1999.
[13] I. Betova and et. al., “Influence of the electrolyte composition and temperature on the transpassive dissolution of austenitic stainless steels in simulated bleaching solutions,” Electrochimica Acta, vol. 47, pp. 3335-3349, 2002.
[14] I. Betova and et. al., “The transpassive dissolution mechanism of highly alloyed stainless steels Ⅱ.Effect of pH and solution anion on the kinetics, ” Corrosion Science, vol. 44, pp. 2699-2723, 2002.
[15] D. Landolt and et. al., “Electrochemical methods in tribocorrosion:a critical appraisal,” Electrochimica Acta, vol. 46, pp. 3913-3929, 2001.
[16] D. Landolt and et. al. “Third body effects and material fluxes in tribocorrosion systems involving a sliding contact,” Wear, vol. 256, pp. 517-524, 2004.
[17] D. Landolt and et. al., “The effect of mechanical and electrochemical parameters on the tribocorrosion rate of stainless steel in sulphuric,” Wear, vol. 255, pp. 466-475, 2003.
[18] D. Landolt and et. al., “The effect of contact configuration on the tribocossion of stainless steel in reciprocating sliding under potentiostatic control,” Corrosion Science, vol. 45, pp. 625-640, 2003.
[19] P. Jemmely and et. al., “Tribocorrosion behavior of Fe-17Cr stainless steel in acid and alkaline solutions,” Tribology International, vol. 32 pp. 295-303, 1999.
[20] M. Seo and et. al., “Nano-Mechano-Electrochemistry of passive metal surfaces,” Electrochemica Acta, vol. 47 pp. 319-325, 2001.
[21] M. Seo and et. al., “Nano-Mechano-Electrochemistry properties of passive titanium surfaces evaluated by in-situ Nano-indentation and Nano-scratching,” Electrochemica Acta, vol. 48 pp. 3221-3228, 2003.
[22] S. Y. Chiu and et. al., “The application of electrochemical metrologies for investigating chemical mechanical metrologies for investigating chemical mechanical polishing of Al with Ti barrier layer,” Materials Chemistry, vol. 82 pp. 444-451, 2003.
[23] Y. L. Wang. and et. al., “Material Characteristics and Chemical-Mechanical Polishing of Aluminum alloy thin films,” Thin Solid Films, vol. 332 pp. 397-403, 1998.
[24] D. Zeidler and et. al., “Characterization of Cuchemical mechanical polishing by electrochemical investigaions,” Microelectronic Engineering, vol. 33 pp. 259-265, 1997.
[25] “The effects of electropolishing process materials processing parameters on corrosion resistance of 316L stainless steel,” Journal of Materials Processing Technology, vol. 140 pp. 206-210, 2003.
[26] S. J. Lee and et. al., “The effects of electropolishing process materials processing parameters on corrosion resistance of 316L stainless steel,” Journal of Materials Processing Technology, vol. 140 pp. 206-210, 2003.
[27] J. Li and Date J. Meier, “An AFM study of the properties of passive films on iron surface,” Journal of Electroanalytical Chemiistry, vol. 454 pp. 53-58, 2003.
[28] Matias N. Troccoli and et. al., “Polysilicon TFT circuits on flexible stainless steel foils,” Solid-State Electronics, vol. 50 pp. 1080-1087, 2006.
[29] Se Hwan Kim and et. al., “High-performance hydrogenated amorphous silicon TFT on flexiblemetalfoilwith polyimide planarization,” Journal of Non-Crystalline Solids, vol. 354 pp. 2529-2533, 2008.
[30] Zhiyuan Xie and et. al., “A flexible top-emitting organic light-emitting diode on steel foil,” Chemical Physics Letters, vol. 381 pp. 691-696, 2003.
[31] Zhiyuan Xie and et. al., “Fabrication of flexible organic top-emitting devices on steel foil substrates,” Materials Science & Engineering B, vol. 106 pp. 219-223, 2004.
[32] 李諭銘,316L不銹鋼電化學機械拋光機制探討研究,元智大學,碩士論文,2004.
[33] 李輝煌,田口方法品質設計的原理與實務,高立圖書有限公司,2002.
[34] 機械工業雜誌339期,100年6月號.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top