(3.238.173.209) 您好!臺灣時間:2021/05/09 16:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡子昊
研究生(外文):Tzu-Hao Chien
論文名稱:可撓式微型感測器用於燃料電池內部局部壓力、溫度及流量之即時監測
論文名稱(外文):Monitoring local pressure/temperature/flow rate inside a PEMFC by flexible multi-functional micro sensors
指導教授:楊大中楊大中引用關係
指導教授(外文):Tachung Yang
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:100
中文關鍵詞:可撓式微型感測器微機電質子交換模燃料電池
外文關鍵詞:Flexible micro sensorsMEMSPEMFC
相關次數:
  • 被引用被引用:2
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
燃料電池會受溫度、流量及壓力等環境條件影響,不同的條件則直接會影響燃料電池輸出的電位、電流及功率。然而環境條件的不均勻性仍存在於燃料電池內部各區域,因此燃料電池的水熱管理相當急需觀察及控制。
過去水熱條件的觀測研究中,大多以mm尺度的感測器進行侵入式測量。本研究為降低感測器對燃料電池性能的影響,以微機電製程將感測器微縮至μm尺寸,以非侵入式測量的方法進行燃料電池的觀測。研究架構主要分成二大部分:1. 可撓式微型感測器之製作:以微機電製程製作整合式微型感測器,製作於40μm厚的不鏽鋼材料上;2. 燃料電池內部局部監測:將微型感測器埋置於燃料電池內,即時監測燃料電池其溫度、流量、壓力值與輸出性能與現象分析。
本研究已成功開發出整合式微型壓力、溫度、流量感測器,並嵌入單電池質子交換膜燃料電池中測量。在0.1A/cm2設定下(RH50%),其反應不劇烈、上、下游溫度較平均。而當加濕至RH100%時,則入口溫度則因積水問題下降。1A/cm2下,其電化學反應劇烈,上游溫度高於熱電偶2.7°C,而下游則因積水問題溫度為62°C。


Temperature, flow and pressure are critical parameters which affect fuel cell performance such as potential, current and power density. Therefore, monitoring non-uniform temperature/flow rate/pressure inside a proton exchange membrane fuel cell (PEMFC) is an essential issue.
In order to avoid performance of PEMFC decreasing, this research reduces the size of sensors to μm scale by Micro-Electro-Mechanical System (MEMS). Therefore, non-invasive measurement inside a PEMFC is verified. This research work is mainly divided to two parts: 1. Fabrication process of flexible micro sensors on a stainless steel substrate by MEMS; 2. Embedding sensors into a PEMFC, and monitoring local temperature/flow rate/ pressure of PEMFC and cell performance.
The integrated flexible micro sensors were fabricated successfully. Sensors were embedded into a PEMFC to measure local pressure, temperature, and flow rate. Temperatures of upstream and downstream of the PEMFC are 64.8 °C and 64.7°C (RH50%; 0.1 A/cm2); 62.7 °C and 64.3°C (RH100%; 0.1 A/cm2). The temperature difference between thermal couple and sensor is 0.8°C. Temperature of upstream and downstream is 66.2 °C and 62°C (RH50%; 1 A/cm2). The maximum difference is 4.2°C.


封面…………………………………………………i
書名頁……………………………………………………ii
論文口試委員審定書……………………………………………………iii
授權書…………………………………………………………iv
中文摘要…………………………………………………………v
英文摘要……………………………………………………………vi
誌謝………………………………………………………vii
目錄………………………………………………………viii
表目錄…………………………………………………xi
圖目錄…………………………………………………………xii
符號說明…………………………………………xvi

第一章 緒論
1.1 前言…………………1
1.2 燃料電池簡介…………………1
1.2.1 質子交換膜燃料電池結構…………………4
1.2.2 質子交換膜燃料電池發電原理…………………6
1.3 文獻回顧…………………8
1.3.1 燃料電池影響參數…………………8
1.3.2 PEMFC積水研究…………………10
1.3.3 微溫度感測器………………15
1.3.4 微壓力感測器……………………19
1.3.5 微流量感測器…………………24
1.4 研究動機與目的…………………32
第二章 燃料電池與可撓式微型感測器設計製作
2.1 受測燃料電池之元件…………………36
2.2 雙極流道板之設計…………………38
2.3 微型溫度感測器…………………40
2.3.1 壓力感測器介紹…………………40
2.3.2 電容壓力感測器之原理與設計…………………41
2.4 微型溫度感測器………………………42
2.4.1 溫度感測器介紹…………………42
2.4.2 RTD溫度感測器之原理與設計…………………43
2.5 微型流量感測器………………………48
2.5.1 流量感測器介紹…………………48
2.5.2 熱線式流量感測器之原理與設計………………48
2.6 微型感測器製作流程……………………50
第三章 燃料電池局部參數與性能即時觀測分析
3.1 微型感測器之校正………………………………70
3.1.1 壓力感測器校正…………………72
3.1.2 溫度感測器校正…………………74
3.1.3 流量感測器校正…………………76
3.2 感測器嵌入燃料電池及測試參數設定…………………77
3.3 燃料電池測試結果…………………81
3.3.1 燃料電池性能曲線…………………81
3.3.2 PEMFC內部溫度監測……………………82
3.4 感測器異常分析…………………86
第四章 結論與未來展望
4.1 結論…………………………………89
4.2 未來展望………………………………90
參考文獻…………………91



1.http://www.energy.gov/
2.J.M. Andújar and F. Segura, “Fuel cells: History and updating. A walk along two centuries,” Renewable and Sustainable Energy Reviews, vol. 13, pp. 2309-2322, 2009.
3.Fuel Cell Today, Johnson Matthey Public Limited Company. www.fuelcelltoday.com (accessed Jan 2005).
4.http://www.tfci.org.tw/Fc/class.asp
5.M.F. Mathias, J. Roth, J. Fleming, W. Lehnert, W. Vielstich and H.A. Gasteiger, A. Lamm (Eds.), Handbook of Fuel Cells—Fundamentals, Technology and Applications, vol. 3, John Wiley & Sons, New York, 2003 (Chapter 42).
6.http://physics.nist.gov/MajResFac/Nif/pemFuelCells.html
7.A. Su, Y.M. Ferng and J.C. Shih, “CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC,” Energy, vol. 35, pp. 16-27, 2010.
8.M.G. Santarelli and M.F. Torchio, “Experimental analysis of the effects of the operating variables on the performance of a single PEMFC,” Energy Conversion and Management, vol. 48, pp. 40-51, 2007.
9.S. Kaytakoğlu and L. Akyalçın, “Optimization of parametric performance of a PEMFC,” International Journal Hydrogen Energy, vol. 32, pp. 4418-4423, 2007.
10.K. Tüber, D. Pócza and C. Hebling, “Visualization of water buildup in the cathode of a transparent PEM fuel cell,” Journal of Power Sources, vol. 124, pp. 403-414, 2003.
11.T. Ous and C. Arcoumanis, “Visualisation of water accumulation in the flow channels of PEMFC under various operating conditions,” Journal of Power Sources, vol. 187, pp.182-189, 2009.
12.T. J. Kim, J. R. Kim, C. M. Sim, S. W. Lee, M. Kaviany, S.Y. Son and M. H. Kim, “Experimental approaches for distribution and behavior of water in PEMFC under flow direction and differential pressure using neutron imaging technique,” Nuclear Instruments and Methods in Physics Research A, vol. 600, pp. 325-327, 2009.
13.R. Satija, D. L. Jacobson, M. Arif and S. A. Werner, “In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells,” Journal of Power Sources, vol. 129, pp. 238-245, 2004.
14.T.A. Trabold, J.P. Owejan, D.L. Jacobson, M. Arif and P.R. Huffman, “In situ investigation of water transport in an operating PEM fuel cell using neutron radiography: Part 1 – Experimental method and serpentine flow field results,” International Journal of Heat and Mass Transfer, vol. 49, pp. 4712-4720, 2006.
15.J. P. Owejan, T. A.. Trabold, D. L. Jacobson, D. R. Baker, D. S. Hussey and M. Arif, “In situ investigation of water transport in an operating PEM fuel cell using neutron radiography: Part 2 – Transient water accumulation in an interdigitated cathode flow field,” International Journal of Heat and Mass Transfer, vol. 49, pp. 4721-4731, 2006.
16.S. S. Hsieh, Y.J. Huang and B. S. Her, “Pressure drop on water accumulation distribution for a micro PEM fuel cell with different flow field plates,” International Journal of Heat and Mass Transfer, vol. 52, pp. 5657-5659, 2009.
17.F. Barbir, H. Gorgun and X. Wang, “Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells,” Journal of Power Sources, vol. 141, pp.96-101, 2005.
18.F. B. Weng, A. Su and C. Y. Hsu, “The study of the effect of gas stoichiometric flowrate on the channel flooding and performance in a transparent fuel cell,” International Journal of Hydrogen Energy, vol. 32, pp. 666-676, 2007
19.S. Shimpalee, U. Beuscher and J.W. Van Zee, “Analysis of GDL flooding effects on PEMFC performance,” Electrochimica Acta, vol. 52, pp. 6748-6754, 2007.
20.N. A. David, Peter M. Wild, J. Hu and N. Djilali, “In-fibre Bragg grating sensors for distributed temperature measurement in a polymer electrolyte membrane fuel cell,” Journal of Power Sources, vol. 192, pp. 376-380, 2009.
21.M. Wang, H. Guo and C. Ma, “Temperature distribution on the MEA surface of a PEMFC with serpentine channel flow bed,” Journal of Power Sources, vol. 157, pp. 181-187, 2006.
22.K. Inman, X. Wang and B. Sangeorzan, “Design of an optical thermal sensor for proton exchange membrane fuel cell temperature measurement using phosphor thermometry,” Journal of Power Sources, vol. 195, pp. 4753-4757, 2010.
23.S. He, M. M. Mench and S. Tadigadapa, “Thin film temperature sensor for real-time measurement of electrolyte temperature in a polymer electrolyte fuel cell, ” Sensors and Actuators A, vol. 125, pp. 170-177, 2006.
24.Q. Zhang, X. Wang, Y. Zhu, Y. Zhou, X. Qiu and L. Liu, “ Optimized temperature control system integrated into a micro direct methanol fuel cell for extreme environments,” Journal of Power Sources, vol. 192, pp. 494-501, 2009.
25.C. S. Park, B. S. Kang, D. W. Lee, T. Y. Choi and Y. S. Choi, “Fabrication and characterization of a pressure sensor using a pitch-based carbon fiber,” Microelectronic Engineering, vol. 84, pp. 1316-1319, 2007.
26.D. W. Lee and Y. S. Choi, ”A novel pressure sensor with a PDMS diaphragm,” Microelectronic Engineering, vol. 85, pp. 1054-1058, 2008.
27.C. C. Chiang, C. K. Lin and M. S. Ju, “An implantable capacitive pressure sensor for biomedical applications,” Sensors and Actuators A, vol. 134, pp. 382-388, 2007.
28.G. Koley, J. Liu, M.W. Nomani, M. Yim, X. Wen and T.Y. Hsia, “Miniaturized implantable pressure and oxygen sensors based on polydimethylsiloxane thin films,” Materials Science and Engineering C, vol. 29, pp. 685-690, 2009.
29.P. K. Kinnell and R. Craddock, “Advances in silicon resonant pressure transducers,” Procedia Chemistry, vol. 1, pp. 104-107, 2009.
30.X. W. Liu, X. B. Lu, R. G. Chuai, C. G. Shi and C. G. Suo, “ Polysilicon nanofilm pressure sensor,” Sensors and Actuators A, vol. 154, pp. 42-45, 2009.
31.D. Li, T. Zhao, Z. Yang and D. Zhang, “Monolithic integration of a micromachined piezoresistive flow sensor,” Journal of Micromechanics and Microengineering,” vol. 20, pp. 035024-035031, 2010.
32.D. Randjelović, Z. Djurić, A. Petropoulos, G. Kaltsas, Z. Lazić and M. Popović, “Analytical modelling of thermopile based flow sensor and verification with experimental results,” Microelectronic Engineering, vol. 86, pp. 1293-1296, 2009.
33.T. H. Kim, D. K. Kim and S. J. Kim, “Study of the sensitivity of a thermal flow sensor,” International Journal of Heat and Mass Transfer, vol. 52, pp. 2140-2144, 2009.
34.P. Bruschi, M. Piotto and N. Bacci, “Postprocessing, readout and packaging methods for integrated gas flow sensors,” Microelectronics Journal, vol. 40, pp. 1300-1307, 2009.
35.M. Shikida, T. Yokota, J. Naito and K. Sato, “Fabrication of a stent-type thermal flow sensor for measuring nasal respiration,” Journal of Micromechanics and Microengineering, vol. 20, pp. 055029-055036, 2010.
36.M. Shikida, J. Naito, T. Yokota, T. Kawabe, Y. Hayashi and K. Sato, “A catheter-type flow sensor for measurement of aspirated- and inspired-air characteristics in the bronchial region,” Journal of Micromechanics and Microengineering, vol. 19, pp. 105027-105035, 2009.
37.H. Ma, D. A. Wang, T. H. Hsueh and C. Y. Lee, “A MEMS-based flow rate and flow direction sensing platform with integrated temperature compensation scheme,” Sensors, vol. 9, pp. 5460-5476, 2009.
38.C. Y. Lee , P. C. Chan and C. J. Lee, “Use of Multi-Functional Flexible Micro-Sensors for in situ Measurement of Temperature, Voltage and Fuel Flow in a Proton Exchange Membrane Fuel Cell,” Sensors, vol. 10, pp. 11605-11617, 2010.
39.R. Ahrens and K. Schlote-Holubek, “A micro flow sensor from a polymer for gases and liquids,” Journal of Micromechanics and Microengineering, vol. 19, pp. 074006-074011, 2009.
40.C. Y. Lee, W. Y. Fan and C. P. Chang, “A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors,” Sensors, vol. 11, pp. 1418-1432, 2011.
41.C. Y. Lee, P. C. Chan and C. J. Lee, “Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell,” Sensors, vol. 10, pp. 11605-11617, 2010.
42.C. Y. Lee, W. Y. Fan and W. J. Hsieh, “In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells,” Sensors, vol. 10, pp. 6395-6405, 2010.
43.C. Y. Lee and C. H. Lin, “A novel integration approach for combining the micro thermal sensor and stainless steel foil as gas diffusion layer in micro fuel cell,” Renewable Energy, vol. 35, pp. 759-762, 2010.
44.C. Y. Lee, W. J. Hsieh and G. W. Wu, “Embedded flexible micro-sensors in MEA for measuring temperature and humidity in a micro-fuel cell,” Journal of Power Sources, vol. 181, pp. 237-243, 2008.
45.T. S. Zhao, C. Xu, R. Chan and W. W. Yang, “Mass transport phenomena in direct methanol fuel cells,” Progress in Energy and Combustion Science, vol. 35, pp. 275-292, 2009.
46.H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, R. Abouatallah and A. Mazza, “A review of water flooding issues in the proton exchange membrane fuel cell,” Journal of Power Sources, vol. 178, pp. 103-117, 2008.
47.T. V. Nguyen, “A gas distributor design for Proton-Exchange- Membrane fuel cells,” Journal of the Electrochemical Society, vol. 143, pp. L103-L105, 1996.
48. X. Liu, H. Guo and C. Ma, “Water flooding and two-phase flow in cathode channels of proton exchange membrane fuel cells,” Journal of Power Sources, vol. 156, pp. 267-280, 2006.
49.W. R. Mérida, G. McLean and N. Djilali, “Non-planar architecture for proton exchange membrane fuel cells,” Journal of Power Sources, vol. 102, pp. 178-185, 2001.
50.T.V. Nguyen, “Water management by material design and engineering for PEM fuel cells,” ECS Transactions, vol. 3, pp. 1171-1180, 2006.
51.R. S. Gemmen and C. D. Johnson, “Evaluation of fuel cell system efficiency and degradation at development and during commercialization,” Journal of Power Sources, vol. 159, pp. 646-655, 2006
52.Z. Qi and A. Kaufman, “PEM fuel cell stacks operated under dry-reactant conditions ,” Journal of Power Sources, vol. 109, pp. 469-476, 2002.
53.X. Li, I. Sabir and J. Park, “A flow channel design procedure for PEM fuel cells with effective water removal,” Journal of Power Sources, vol. 163, pp. 933-942, 2007.
54.M. Elwenspoek and R. Wiegerink, Mechanical Microsensors, Springer, 2001.
55.C. S. Sander, J. W. Knutti and J. D. Meindl, “A monolithic capacitive pressure sensor with pulse-period output,” IEEE Transactions on Electron Devices, vol. 79, pp. 927-930, 1980.
56.V. Casey, S. O’Sullivan and J.A. McEwen, “Interface pressure for IVRA and other biomedical applications,” Medical engineering and physics, vol. 26, pp. 177-182, 2004.
57.Z. Xue and H. Qiu, “Integrating micromachined fast response temperature sensor array in a glass microchannel,” Sensors and Actuators A: Physical, vol. 122, pp. 189-195, 2005.
58.D. J. Lichtenwalner, A. E. Hydrick and A. I. Kingon, “Flexible thin film temperature and strain sensor array utilizing a novel sensing concept,” Sensors and Actuators A: Physical, vol. 135, pp. 593-597, 2007.
59.W. Yan, H. Li, Y. Kuang, L. Dub and J. Guob, “Nickel membrane temperature sensor in micro-flow measurement,” Journal of Alloys and Compounds, vol. 449, pp. 210-213, 2008.
60.A. Oprea, J. Courbat, N. Bârsan, D. Briand, N. F. de Rooij and U. Weimar, “Temperature, humidity and gas sensors integrated on plastic foil for low power applications,” Sensors and Actuators B: Chemical, vol. 140, pp. 227-232, 2009.
61.R. C. Weast, CRC Handbook of Chemistry and Physics, 64th ed., CRC Press, 1983.
62.G. S. Chung and C. H. Kim, “RTD characteristics for micro-thermal sensors,” Microelectronics Journal, vol. 39, pp. 1560-1563, 2008.
63.K. L. Zhang, S. K. Chou and S. S. Ang, “Fabrication, modeling and testing of a thin film Au/Ti microheater,” International Journal of Thermal Sciences, vol. 46, pp. 580-588, 2007.
64.行政院國家科學委員會精密儀器發展中心,微機電系統技術與應用,全華科技圖書股份有限公司,台北,民國九十四年。
65.K. Niume, R. Hirohashi, F. Toda, M. Hasegawa and Y. Iwakura, “Thermal and electrical properties of polyimides containing tricyclic fused rings,” Polymer, vol. 22, pp. 694-654, 1981.
66.http://en.wikipedia.org/wiki/Polyimide
67.http://www.paryleneinc.com/pdf/PDS_Dimer_International.pdf
68.http://www.vp-scientific.com/parylene_properties.htm
69.莊達人,VLSI 製造技術,高立出版社,2005年五版。
70.J. Garra, T. Long, J. Currie, T. Schneider, R. White and M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” Journal of Vacuum Science Technology, vol. 20, pp. 975-982, 2002.
71.M. Paranjape, J. Garra, S. Brida, T. Schneider, R. White and J. Currie, “A PDMS dermal patch for non-intrusive transdermal glucose sensing,” Sensors and Actuators A: Physical, vol. 104, pp. 195-204, 2003.
72.B. Balakrisnan, S. Patil and E. Smela, “Patterning PDMS using a combination of wet and dry etching,” Journal of Micromechanics and Microengineering, vol. 19, pp. 047002-04708, 2009.
73.J. Tong, C. A Simmons and Y. Sun, “Precision patterning of PDMS membranes and applications,” Journal of Micromechanics and Microengineering, vol. 18, pp. 037004-037008, 2008.
74.F. Schneider, J. Draheim, R. Kamberger and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sensors and Actuators A: Physical, vol. 151, pp. 95-99, 2009.
75.J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices”, Analytical Chemistry, vol. 75, pp. 6544-6554, 2003.
76.張志成,「微機電感測元件之可調壓調溫測試系統研製」,淡江大學,碩士論文,民國93年。


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔