(3.238.173.209) 您好!臺灣時間:2021/05/17 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃大維
研究生(外文):Dai-Wei Huang
論文名稱:熵分析理論應用於手術中病患之麻醉深度評估
論文名稱(外文):Entropy Analysis Algorithms Applied in Depth of Anesthesia in Operating Theater
指導教授:謝建興
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:34
中文關鍵詞:麻醉深度腦波樣本熵接收者操作特徵(ROC curve)反應熵/狀態熵 (response entropy / state entropy)曼惠二氏U檢定法(Mann-Whitney test)
外文關鍵詞:depth of anesthesia (DOA)electroencephalogram (EEG)sample entropy (SampEn)ROC (Receiver Operating Characteristics) curveRE/SE (response entropy / state entropy)Mann-Whitney test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:584
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:2
麻醉是在外科手術中不可或缺的一環,過淺或過深的麻醉劑量會對病人有不良的影響。因此近幾年才定義麻醉深度來討論病患在麻醉過程中的清醒程度,但麻醉深度的判定,卻是一個未被充分了解的主題,所以近年來才會有許多醫療儀器以及方法來輔助醫生判定麻醉深度,但是相關的研究理論還未完全清楚,許多麻醉深度監測儀器正嘗試輔助主觀判斷的不足。
本文是根據現有的手術房常用器材以及設備,透過 Datex AS5 腦波模組來收集RE/SE (response entropy / state entropy) 以及腦波的訊號,並且利用數位濾波的方法將腦波中過大的雜訊過濾掉後,以樣本熵(sample entropy)來分析腦波訊號,最後分別比較不同的參數與RE/SE比較後做出最好的結果。
本論文的資料收集主要是以泌尿科手術為主。最後經由統計分析10名病患的RE/SE指標以及樣本熵數值,透過接收者操作特徵(ROC curve)以及曼惠二氏U檢定法(Mann-Whitney test)分析結果得知,樣本熵的結果與RE/SE指標相去不遠,但RE/SE詳細分析方法我們無從得知,相對的樣本熵分析方法中的參數可以依照不同病患種類的需要做更改,對於往後的麻醉深度即時分析的軟體的撰寫有很大的幫助。


Anesthesia is an essential part of a successful operation. Inappropriate depth of anesthesia (DOA) can cause severe complications. Until recently, the depth of anesthesia was dependent on the anesthesiologist subjective judgment. Recently, research has tried to quantify the depth of anesthesia. However, this quantification of the depth of anesthesia is only well correlated with some anesthetics.
Many medical devices try to assist doctors to determine the depth of anesthesia. This thesis is based on existing operating room equipment commonly used by Datex AS5 EEG module to collect RE/SE (response entropy / state entropy) signals and electroencephalogram (EEG) signals. We used digital filtering to filter EEG noise. Then sample entropy (SampEn) was used to analyze the EEG signals. Finally, the offline results of sample entropy analysis of different parameters were compared with RE / SE.
The data collected in this thesis is from urology surgery. 10 patients’ RE/SE signals were compared with a sample entropy index. ROC (Receiver Operating Characteristics) curve and Mann-Whitney test analysis results show that sample entropy and RE / SE index are quite similar, but the RE / SE method is difficult to obtain the details. In contrast, we can change the sample entropy analysis of the parameters in different types of patient. This allows us to write this algorithm into real time analysis in the future.


Front cover i
Title Page ii
論文口試委員審定書 iii
授權書 iv
Chinese abstract v
Abstract vi
誌謝 vii
Content viii
List of Figure x
List of Table xi
Abbreviation xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Electroencephalogram 1
1.3 Review of Studies 2
1.4 Anesthesia equipment 5
1.5 Purpose 5
1.6 Brief summary of chapters 6
Chapter 2 Analysis Algorithm 7
2.1 Entropy 7
2.2 Sample Entropy (SampEn) 10
2.3 Multi-Scale Entropy (MSE) 13
Chapter 3 Experiment Condition and Method 15
3.1 Data Source 15
3.2 Standard Process of Procedure 16
3.3 Data Collection 16
3.4 Experiment Equipment 17
Chapter 4 Results 21
4.1 Materials 21
4.2 Data analysis 21
4.3 Results 25
4.4 Conclusions 28
Chapter 5 Conclusions 30
5.1 Conclusions 30
5.2 Discussions and Future works 31
References 32



[1]Schwilden H., Stoeckel H., “Quantitative EEG analysis during anaesthesia with isoflurane in nitrous oxide at 1.3 and 1.5 MAC “. Br J Anaesth, vol. 59, pp. 738–45, 1987.
[2]Katoh T, Suzuki A, Ikeda K., “Electroencephalographic derivatives as a tool for predicting the depth of sedation and anesthesia induced by sevoflurane”. Anesthesiology, vol. 88, pp.642–50, 1998.
[3]Tetsuya Miyashita, Kenichi Ogawa, Hideki Itoh, Yukiko Arai, Minako Ashidagawa,Munehito Uchiyama, Yasuhiro Koide, Tomio Andoh, Yoshitsugu Yamada, “Spectral analyses of electroencephalography and heart rate variability during sleep in normal subjects”. Autonomic Neuroscience: Basic and Clinical, vol. 103, pp. 114– 120,2003.
[4]Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL., “Acomparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther”, vol. 61, pp. 45–58, 1997.
[5]Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbauer N., “Chaos and physiology: Deterministic chaos in excitable cell assemblies”, Physiol Rev, vol. 74, pp.1–47, 1994.
[6]Pritchard WS, Duke DW.,“Measuring chaos in the brain:A tutorialreview of nonlinear dynamical analysis. Brain J Neurosci” vol. 67, pp.31–80, 1992.
[7]Fell J, Röschke J, Mann K, Scha ffner C., “Discrimination of sleepstages: A comparison between spectral and nonlinear EEG measures. ”Electroencephalogr Clin Neurophysiol, vol. 98, pp.401–10, 1996.
[8]Grassberger P, Procaccia I., “Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev, vol. A28, pp. 2591–3, 1983.
[9]Eckmann JP, Ruelle D., “Ergodic theory of chaos and strangeattractors. Rev Mod Phys, vol. 57, pp.617–56, 1985.
[10]Bruhn J.R., Heiko R.P., Andreas H., “Approximate Entropy as an Electroencephalographic Measure of Anesthetic Drug Effect during Desflurane Anesthesia”, Anesthesiology, vol. 92, pp.715-26, 2000.
[11]Yeragania K Vikram, Robert Pohla, Mallika Mallavarapub, Richard Balona, “Approximate entropy of symptoms of mood: an effective echnique to quantify regularity of mood”, Bipolar Disorders, vol.5,pp. 279–286, 2003.
[12]Diambraa L., Bastos Figueiredoa J.C.;b, Maltaa C.P., “Epileptic activity recognition in EEG recording”, Elsevier Physica A, vol. 273, pp. 495-505, 1999.
[13]Stephanie A., “Use of Approximate Entropy Measurements to Classify Ventricular Tachycardia and Fibrillation”, Journal of Electrocardiology, vol. 31, pp.101-105, 1998.
[14]Xu-Sheng Zhang, Rob J. Roy, Erik Weber Jensen., “EEG Complexity as a Measure of Depth of Anesthesia for Patients” ,IEEE Transactions On Biomedical Engineering, vol. 48, pp.12, 2001.
[15]Steveninck R. R. de R. van, Lewen G. D., Strong S. P., Koberle R., and Bialek W., “Reproducibility and variability in neural spike trans,” Science, vol. 275, no. 21, pp. 1805–1808, 1997.
[16]Strong S. P., Koberle R., Steveninck R. R. de R. van, and Bialek W. ,“Entropy and information in neural spike trains,” Phys. Rev. Lett., vol.80, no. 1, pp. 197–200, 1998.
[17]Schultz S. R. and Panzeri S., “Temporal Correlations and Neural Spike Train Entropy,” Phys. Rev. Lett., vol. 86, no. 25, pp. 5823–5826, June 2001.
[18]Goldberger A. L., Peng C.-K, and Lipsitz L. A., What is physiologic complexity and how does it change with aging and disease? , Neurobiol. Aging, January 2002 (Vol. 23, Issue 1, Pages 23-26).
[19]Zhang Y.-C.. Complexity and 1/f noise. A phase space approach. Journal de Physique I, Volume 1, Issue 7, July 1991, pp.971-977.
[20]Fogedby H. C.. On the phase space approch to complexity. Journal of Statistical Physics, Volume 69, Issue 1-2, pp. 411-425.
[21]Goldberger A. L. and Peng C.-K., Multi-scale Entropy Analysis of Complex Physiologic Time Series, Physical Review Letters, DOI: 10.1103/PhysRevLett.89.068102.
[22]Richman, J. S. & Moorman, J. R. 2000 Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049.
[23]Pincus, S. M. Approximate entropy as a measure of system complexity. Proc. Natl Acad. Sci.USA 88, 2297–2301, 1991. (doi:10.1073/pnas.88.6.2297)
[24]Lake, D. E., Richman, J. S., Griffin, M. P. & Moorman, J. R. 2002 Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R789–R797.(doi:10.1152/ajpregu.00069.2002)
[25]Rodriguez E, Echeverria JC, Ramirez JA. “Detrending fluctuation analysis based on high-pass filtering,” Physica A; 375:699-708 (2007).
[26]Richman Joshua S. and Moorman J. Randall. Physiological time-series analysis using approximate entropy and sample entropy.
[27]Fritsch F. N. and Carloson R. E.. Monotone Piecewise Cubic Inuerpolation*.
[28]Pyke D. A.; Thompson J. N..Statistical Analysis of Survival and Removal Rate Experiments.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top