(3.210.184.142) 您好!臺灣時間:2021/05/12 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王仲敏
研究生(外文):Chung-Min Wang
論文名稱:氫化法調控Ti-6Al-4V合金奈米晶粒研究
論文名稱(外文):Nanostructured Ti-6Al-4V Alloys Developed with Isothermal Hydrogen Treatment
指導教授:李碩仁李碩仁引用關係
指導教授(外文):Shuo-Jen Lee
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:90
中文關鍵詞:Ti-6Al-4V熱氫製程晶粒細化奈米結構微硬度測試
外文關鍵詞:Ti-6Al-4Vthermal hydrogenation processinggrain refinementnanostructureshardness test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:556
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文係以Ti-6Al-4V合金為材料,為α(HCP) + β(BCC)型鈦合金,研究其層狀(Lamellar)與等軸晶(Equiaxed)結構,經過恆溫600 ℃之氣相氫化處理,觀察相變化正逆反應完成後,對合金微結構型態的改變與機械性質的改善,相變化途徑分別為α + β ↔ αH + βH(0.1 H/M)、α + β ↔ βH(0.3、0.5、0.6 H/M)與α + β ↔ βH + δ(FCC)(0.7、0.9 H/M)。X-ray繞射分析顯示,合金吸放氫處理後,皆無發現氫化鈦相,而層狀與等軸晶α相主特徵峰受晶粒細化現象影響,導致半高寬皆寬化,但歷經生成δ相之樣品因氫脆,其半高寬變小。金相觀察發現,氫化處理不影響合金相分佈的特徵排列,對維持其機械性質特性有相當幫助;α相晶粒歷經相變化後,層狀與等軸晶皆生成薄片狀之奈米結構,晶粒細化程度可達50至100 nm之間;但歷經βH + δ相變化(0.7、0.9 H/M)的試片,由於吸氫過程中,δ氫化鈦生成時應變能過大,因此皆有氫脆現象產生,分別為奈米與微米等級裂痕。晶粒細化效果根據Hall-Petch經驗式,幫助合金硬度的提升;層狀與等軸晶最高提升約28 %,但層狀與等軸晶於δ相生成之後硬度皆因裂痕而下降,且氫化程度越高裂痕越寬。

This research is aimed to study the grain refinement and mechanical properties of Ti-6Al-4V (Ti64) alloy, which is α (HCP) + β (BCC) type titanium alloy, with isothermal hydrogenation treatment. Two kinds of initial microstructural Ti64 specimens, lamellar and equiaxed, will be studied. The specimens are treated with different phase transformation process such as α + β ↔ αH + βH (0.1 H/M), α + β ↔ βH (0.3, 0.5, 0.6 H/M) and α + β ↔ βH + δ (FCC)(0.7, 0.9 H/M) at the temperature 600 ℃. X-ray diffraction analysis showed that there were no residual metal hydrides in Ti64 after hydrogenation and dehydrogenation treatment. Grain refinement occurs on the lamellar and equiaxed Ti64, which caused the full width at half maximum (FWHM) of α phase peak broadening. Metallographic observations showed that the major microstructural feature of lamellar and equiaxed is preserved, after hydrogenation treatment. These results are helpful to maintain their original mechanical properties. According to scanning electron microscopy (SEM) observations, the refined plate-like nanostructures within the α matrix is seen in both structures. The thickness of the refined α grains is approximately 50-100 nm. However, lamellar and equiaxed Ti64 specimens, which are treated with α + β ↔ βH + δ (0.7,0.9 H/M) phase transformation, becomes embrittlemen due to the occurrence of the heavy strain associated with titanium hydrides (δ) during hydrogenation. The width of the crack size is nanometer and micrometer for 0.7 and 0.9 H/M, respectively. According to the Hall-Petch equation, formation of the nanostructures helps to increase the hardness of the Ti64 alloys. In the optimum hydrogen loading around 0.6 H/M, the hardness of the lamellar and equiaxed specimens were enhanced significantly about 28 %. However, over hydrogen loading of 0.7 H/M, the hardness of specimens were decreased (embrittlemen) because the δ hydride has been once formed.

書名頁 i
論文口試委員審定書 ii
授權書 iii
中文摘要 iv
英文摘要 v
誌謝 vii
目錄 viii
表目錄 xii
圖目錄 xiii
第一章 前言 1
1.1引言 1
1.2鈦與鈦合金 1
1.2.1鈦 1
1.2.2鈦合金的基本分類 2
1.3 Ti-6Al-4V(Ti64)合金 4
第二章 理論基礎與文獻回顧 9
2.1晶粒細化 9
2.2晶粒細化的途徑 9
2.2.1熱機處理 10
2.2.2熱氫製程 10
2.3熱氫製程理論基礎與文獻回顧 11
2.3.1吸(充)氫方式分析 11
2.3.2熱氫製程實例 13
2.4研究動機與目的 15
2.4.1 (I)熱處理-製備層狀與等軸晶Ti64合金 15
2.4.2 (II)熱氫製程-細化合金晶粒 16
2.4.3 (III)觀察晶粒細化效果與機械性質測試 17
第三章 實驗方法與流程 28
3.1熱處理製備層狀與等軸晶Ti64合金 28
3.2吸放氫處理 29
3.2.1 PCI儀器介紹 29
3.2.2通道體積量測 31
3.2.3壓力補償校正 32
3.3試片之微結構觀察 36
3.3.1 X-ray 繞射儀 (X-ray Diffraction, XRD) 36
3.3.2 Optical microscopy (OM)表面型態觀測 36
3.3.3 FE-SEM表面型態觀測與EDS成份分析 37
3.4試片機械性質量測儀器 38
3.4.1微硬度試驗 38
第四章 結果與討論 44
4.1 Ti64合金熱處理後之微結構觀察 44
4.2 Ti64合金氫化處理之吸放氫動力曲線 45
4.2.1吸氫動力曲線 45
4.2.2放氫曲線 47
4.3層狀Ti64合金 48
4.3.1 X-ray 繞射分析 48
4.3.2微結構形貌觀察 50
4.3.3微硬度測試 52
4.4等軸晶Ti64合金 53
4.4.1 X-ray 繞射分析 53
4.4.2微結構形貌觀察 54
4.4.3微硬度測試 55
第五章 結論 84
第六章 未來展望 85
參考文獻 86
附錄 88
附錄一 PCI儀器各通道體積整理 88
附錄二 Channel A與Channel B溫度對壓力補償校正式 90


[1]http://www.titan-taiwan.org.tw/Profile.aspx, "台灣鈦金屬協會"網站.
[2]蘇明德,鈦的自述,科學發展,426期,2008年6月.
[3]賴耿陽,金屬鈦理論與應用,復漢出版社,台南,第31-56頁,1990.
[4]M. Peters, J. Hemptenmacher, J. Kumpfert, C. Leyens, Structure and Properties of Titanium and Titanium Alloys. In: C. Leyens and M. Peters, Editors. Titanium and Titanium Alloys, Koln, Wiely-Vch, 2003.
[5]Rodney Boyer, Gerhard Welsch, Materials Propertise Handbook:Titanium Alloys, E.W. Collings, Battelle Memorial Institue, Columbus, Ohio, USA
[6]Donald R. Askeland, The science and engineering of materials, third edition, PWS Publishing Company, 1994.
[7]M. A. Meyers, K. K. Chawla, Mechanical metallurgy-principles and appliucations, New Jersey, Prentice-Hall, 1984.
[8]Y.M. Wang, E. Ma, Acta Mater., 52 (2004) 1699.
[9]Y.Y. Zong, D.B. Shan, Y. Lu, B. Guo, Int. J. Hydrogen Energy, 32 (2007) 3936.
[10]S. N. Patankar, J. P. Escobedo, D. P. Field, G. SalishcHev, R. M. Galeyev, O.R. Valiakhmetov, F.H. Froes, J. Alloys Comp., 345 (2002) 221.
[11]C.Y. Yu, L.X. Yang, C.C. Shen, B. Luan, T.P. Perng, Scripta Mater., 56(2007)1019.
[12]S. Wu, K. Fan, P. Jiang, S. Chen, Mater. Sci. Eng. A, 527 (2010) 6917.
[13]S. Zherebtsov, A. Mazur, G. Salishchev, W. Lojkowski, Mater. Sci. Eng. A, 485 (2008) 39.
[14]L.R. Saitova, H.W. Hoppel, M. Goken, I.P. Semenova, G.I. Raab, R.Z. Valiev, Mater. Sci. Eng. A, 503 (2009) 145.
[15]B.G. Yuan, C.F. Li, H.P. Yu, D.L. Sun, Mater. Sci. Eng. A, 527 (2010) 4185.
[16]E. Tal-Gutelmacher, D. Eliezer, D. Eylon, Mater. Sci. Eng. A, 381 (2004) 230.
[17]T.Y. Fang, W.H. Wang, Mater. Chem., Phys., 56 (1998) 35.
[18]C.C. Shen, T.P. Perng, Acta Mater., 55 (2007) 1053.
[19]C.C. Shen, T.P. Perng, Acta Mater., 57 (2009) 868.
[20]T.I. Wu, J.K. Wu, Metall. Trans., 24 (1993) 1181.
[21]T.I. Wu, J.K. Wu, Mater. Chem. Phys., 80 (2003) 150.
[22]T.I. Wu, J.C Wu, Mater. Chem. Phys., 440 (2008) 110.
[23]J.C. Feng, H. Liu, P. He, J. Cao, Int. J. Hydrogen Energy, 32 (2007) 3054.
[24]Hirofumi Yoshimura, Jun Nakahigashi, J. Alloys Comp., 293-295 (1999) 858.
[25]Hirofumi Yoshimura, Jun Nakahigashi, Int. J. Hydrogen Energy, 27 (2002) 769.
[26]F. H. Froes, O. N. Senkov, J. I. Qazi, Int. Mater. Rev., 49 (2004) 227.
[27]D. Eliezer, N. Eliaz, O. N. Senkov, F. H. Froes, Mater. Sci. Eng. A, 280 (200) 220.
[28]N. Eliaz, D. Eliezer, D. L. Olson, Mater. Sci. Eng. A, 289 (200) 41.
[29]C.T. Liu, T.I. Wu, J.K. Wu, Mater. Chem. Phys., 110 (2008) 440.
[30]吳榮賓, 國立臺灣海洋大學, 材料工程研究所碩士論文, 2007.
[31]Y. Zhang, S.Q. Zhang, Int. J. Hydrogen Energy, 22 (1997) 161.
[32]J. Zhao, H. Ding, Y. Zhong, C.S. Lee, Int. J. Hydrogen Energy, 35 (2010) 6448.
[33]Y. Wang, M. Chen, F. Zhou, E. Ma, Nature, 419 (2002) 912.
[34]C.C. Shen, S.M. Lee, J.C. Tang, T.P. Perng, J. Alloys Comp., 356-357 (2003) 800.
[35]M. V. C. Sastri, Metal Hydrides, Narosa Publishing House, 1998.
[36]C.Y. Yu, C.C. Shen, T.P. Perng, Scripta Mater., 55 (2006) 1023.
[37]B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, third edition, p. 174.
[38]T. Schober, H. Wenzl, In: G. Alefeld, J. Volkl, Hydrogen in metals, vol. 2. Berlin : Springer-Verlag, 1987. 


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔