(18.206.238.77) 您好!臺灣時間:2021/05/11 23:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:古召呈
研究生(外文):Chao-Cheng Ku
論文名稱:碳纖維粉末與沙塵暴之電磁波吸收散射
論文名稱(外文):Scattering and Absorption of Carbon-Fiber Powderand Sand/Dust Storm
指導教授:陳興義陳興義引用關係
指導教授(外文):Hsing-Yi Chen
學位類別:碩士
校院名稱:元智大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:70
中文關鍵詞:特性消光截面轉頻法碳纖維粉末衰減沙塵暴時域有限差分法微波雨毫米波
外文關鍵詞:specific extinction cross-sectionturning bands methodcarbon-fiber powerAttenuationsand and dust stormsfinite-difference time-domainmicrowave and millimeter-wave
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用時域有限差分法(FDTD)來研究碳纖粒子在電磁波頻率35GHz的特定消光截面(SECS)與沙塵暴在頻率10至100 GHz的電磁波衰減,並利用轉頻(Turning Bands)方法模擬碳纖粒子與沙塵粒子隨機分佈的數位模型。 針對特定消光截面的研究結果發現,柱狀之碳纖維的直徑與立方體之碳纖粒子的邊長大小在相同的狀況下,它們量測與模擬值非常吻合,另外特定消散截面在粒子大小能產生共振時有最大值。在電磁波於沙塵暴中的衰減研究中,我們提出一電磁波衰減公式,此式為能見度、頻率、沙塵粒子半徑、複數的相對介電常數等之函數。研究所獲得的電磁波衰減結果亦與其他四種研究方法所獲得的電磁波衰減做比較。 此四種研究方法分別為: 等效材料特性技術、雷利(Rayleigh)散射近似法、量測式的機率密度方程式與米式散射(Mie scattering)等理論的應用、粒子所引申的體積分式米氏散射法。 其中可以發現經由本論文所導出的公式計算出的結果在五條公式之中為電磁波衰減的中間值。 本研究證實電磁波在沙塵暴中的衰減除了在頻率30GHz以上與能見度低於0.02公里的情況下不能忽略,其他狀況下可以忽略不計。

The finite-difference time-domain (FDTD) method is used to calculate the specific extinction cross-section (SECS) of the carbon-fiber powder at 35 GHz and to investigate the wave attenuation in sand and dust storms at the frequencies of 10-100 GH. The digitized models with a random process using the turning bands method are simulated for the carbon-fiber powder and the sand and dust storm particles. It is found that the numerical result of SECS obtained by using the diameter of a cylindrical carbon-fiber particle as the cubical cell size for simulations makes good agreement with the measurement data. It is also found that the maximum extinction occurs at a resonant particle size. From the study of wave attenuation in sand and dust storms, a formula in terms of
IV
the visibility, frequency, sand and dust particle radius, and complex relative permittivity is proposed to determine the wave attenuation. Obtained results of the wave attenuation are also compared with those obtained by four other methods: the effective material property technique, the Rayleigh scattering approximation, the measured probability density function and Mie scattering theory, and the volumetric integration of Mie scattering results by individual particles. It is found that our formula produces a mean value of wave attenuation among these five formulas. It is also confirmed that the wave attenuation is negligible except for frequencies above 30 GHz and for very severe storms with visibility less than 0.02 km.

ABSRACTS(中文) ...........................................Ⅰ
ABSRACTS.................................................III
ACKNOWLEDGEMENTS...........................................V
CONTENTS..................................................VI
TABLE OF CONTENTS.......................................VIII
ILLUSTRATION OF CONTENTS..................................IX
Chapter 1 INTRODUCTION ....................................1
Chapter 2 EXTINCTION OF CARBON-FIBER POWDER CALCULATED BY THE FDTD AND TURNING BANDS METHODS AT 35 GHZ...............4
2.1 Introduction...........................................4
2.2 The FDTD Method........................................7
2.3 The Turning Bands Method .............................10
2.4 The Specific Extinction Cross-Section ................15
2.5 Research Results .....................................17
2.6 Conclusions...........................................25
Chapter 3 CALCULATION OF WAVE ATTENUATION IN SAND AND DUST STORMS BY THE FDTD AND TURNING BANDS METHODS AT 10-100 GHZ.......................................................26
3.1 Introduction..........................................26
3.2 The FDTD Method.......................................28
3.3 The Turning BandsMethod ..............................30
3.4 Wave Attenuation In Sand And Dust Storms..............35
3.5 Conclusions...........................................60
Chapter 4 CONCLUSIONS.....................................62
REFERENCES ...............................................65

[1] L. Rayleigh, “On the scattering of light by small particles,” Philosophical Magazine, vol. 41, pp. 447-454, 1871. Reprinted in Scientific Papers by Load Rayleigh, Dover Publications Inc., New York, vol. 1, pp. 104-110, 1964.
[2] G.. Mie, “Beitrage zur optic truber medien speziell kolloidaler metallosungen,” Annalen Der Physik, vol. 25, pp. 377-442, 1908.
[3] S. Yasufuku and T. Inohara, “Carbon-fiber technology and its application to the electrical industry in Japan,” IEEE Electrical Insulation Magazine, vol. 3, no. 6, pp. 9-18, 1987.
[4] R. J. Charison, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. JrCoakley, J. E. Hansen, and D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science, vol. 255, no. 5043, pp. 423-430, Jan. 1992.
[5] W. S. Chepil, “Sedimentary characteristics of dust storms: I-Sorting of wind eroded soil material,” Am. J. Sci., vol. 255, pp. 12-22, 1957.
[6] F. H. Ferman, “Visibility reductions from soil dust in the Western U. S.,” Atmos. Envir., vol. 15, no. 11, pp. 1929-1932, 1981.
[7] Y. Shao and C. H. Dong, “A review on east Asian dust storm climate, modeling and monitoring,” Global and Planetary Change, vol. 52, pp. 1-22, 2006.
[8] J. P. Huang, P. Minnis, B. Lin, T. Wang, Y. H. Yi, Y. X. Hu, S. Sun-Mack, and K. Ayers, “Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES,” Geophy. Res. Lett., vol. 33, L06824, pp. 1-4, 2006.
[9] I. Y. Ahmed and L. Y. Auchterlonie, “Microwave measurements on dust using an open resonator,” Electron. Lett., vol. 12, no. 17, pp. 445-446, 1976.
[10]A. J. Ansari and B. G. Evans, “Microwave propagation in sand and dust storms,” Proc. Inst. Elec. Eng., vol. 129F, pp. 315-322, 1982.
[11]I. Y. Ahmed, Microwave Propagation Through Sand and Dust Storms, Ph. D. Dissertation, Univ. Newcastle Upon Tyne, U. K. 1976.
[12]S. I. Ghobrial and S. M. Sharief, “Microwave attenuation and cross polarization in dust storms,” IEEE Trans. Antennas Propagat., vol. AP-35, no. 4, pp. 418-425, April 1987.
[13]J. Goldhirsh, “A parameter review and assessment of attenuation and backscatter properties associated with dust storms over desert regions in frequency range 1 to 10 GHz,” IEEE Trans. Antennas Propagat., vol. AP-30, pp. 1121-1127, 1982.
[14]T. S. Chu, “Effect of sandstorms on microwave propagation,” Bell Syst. Tech. J., vol. 58 pp. 549-555, Feb. 1979.
[15]S. A. A. Abdulla, H. M. Al-Rizzo, and M. M. Cyril, “Particles-size
66
distribution of Iraqi sand and dust storms and their influence on microwave communication systems,” IEEE Trans, Antennas Propagat., vol. 36, no. 1, pp. 114-126, Jan. 1988
[16]S. O. Bashir and N. J. McEwan, “Microwave propagation in dust storms: a review,” IEE Proc., vol.133, Pt. H, no. 3, pp. 241-247, June 1986.
[17]A. A. Ali, “Millimeter wave propagation in arid land: the effect of rain and sand storms,” Int. J. Infr. Millim. Waves, vol. 7, no. 4, pp. 583-598, 1986.
[18]A. S. Ahmed, A. A. Ali, and M. A. Alhaider, “Airborne wave into dust storms,” IEEE Trans. Geosci. Remote Sens., vol. GE-25, no. 5, pp. 593-595, Sep.1987.
[19]S. I. Ghobrial and J. A. Jervase, “Microwave propagation in dust storms at 10.5 GHz - a case study in Khartoum, Sudan,” IEICE Trans. Commun., vol. E80-B, no. 11, pp. 1722-1727, Nov. 1997.
[20]J. Goldhirsh, “Attenuation and backscatter from a derived two-dimensional duststorm model,” IEEE Trans, Antennas Propagat., vol. 49, no. 12, pp. 1703-1711, Dec. 2001.
[21]R. Yang, Z. Wu, and J. U. You, “The study of MMW and MW attenuation considering multiple scattering effect in sand and dust storms at slant paths,” Int. J. Inf. Millim. Waves, vol. 24, no. 8, pp. 1383-1392, Aug. 2003.
[22]Z. Elabdin, M. R. Islam, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to duststorm,” Prog. Electromagn. Res. M, vol. 6, pp. 139-153, 2009.
[23]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag., vol. AP-14, no. 5, pp. 302-307, 1966.
[24]G. Matheron, “The intrinsic random functions and their applications,” Adv. Appl. Prob. vol. 5, pp. 439-468, 1973.
[25] Q. H. Tran, L. Jannaud, and P. Adler, “Coda spectral powder and apparent attenuation factor of acoustic waves in 3-D random media,” J. Acoust. Soc. Am. vol. 94, n0. 4, pp. 2397-2407, 1993.
[26]M. Wake, T. Matsui, K. Ishibashi, T. Satoh, O. Asai, K. Kuno, I. Kawaguchi, K. Wakamoto, R. Fujita, and H. Hirabayashi, “A large superconducting thin solenoid magnet for Tristan experiment(Venus) at KEK,” IEEE Trans. Magnetics, vol. MAG-21, no. 2, pp. 494-497, 1985.
[27]R. Sahai, E. Steltz, and R. S. Fearing, “Carbon fiber components with integrated wiring for millirobot prototyping,” in Proc. IEEE Int. Conf. Robot. Auto., Barcelona, Spain, April 2005.
[28]S. M. Lipka, “Electrochemical capacitors utilizing low surface area
67
carbon fiber,” in Proc. 12th Annu. Batt. Conf. Appl. Adv., Long Beach, CA, Jan. 1997, pp. 245-248.
[29]F. G. Gonon, C. M. Fombarlet. M. J. Buda, and J. F. Pujol, “ Electrochemical treatment of pyrolytic carbon fiber electrodes,” Anal. Chem. vol. 53, no. 9, pp. 1386-1389,1981.
[30]A. Yoshida, I. Tanahashi, Y. Takeuchi, and A. Nishino, “An electric double-layer capacitor with activated carbon-fiber electrodes,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. CHMT-10, no. 1, pp. 100-102, Mar. 1987.
[31]A. J. M. Starrenburg and G. C. Burger, “Carbon fiber as an electrode material,” IEEE Trans. Biomed.Eng., vol. BME-29, no. 5, pp. 352-355, May 1982.
[32]M. Ates, K. Yilmaz, A. Shahryari, S. Omanovic and A. S. Sarac, “A study of the electrochemical behavior of poly [n-vinyl carbazole] formed on carbon-fiber microelectrodes and its response to dopamine,” IEEE Sensors J. vol. 8, no. 10, pp. 1628-1639, Oct. 2008.
[33]M. Colloms, “The first interconnect and revelation loudspeaker cable,” Stereophile, vol. 16, no. 3, p134, May 1993.
[34]A. Mehdipour, A. R. Sebak, C. W. Trueman, I. D. Rosca, and S. V. Hoa, “Reinforced continuous carbon-fiber composities using multi-wall carbon nanotubes for wideband antenna applications,” IEEE Trans. Antennas Propag., vol. 58, no. 7, pp. 2451-2456, July 2010.
[35]A. Mehdipour, C. W. Trueman, A. R. Sebak, and S. V. Hoa, “Carbon-fiber composite T-match folded Bow-tie Antenna for RFID application,” in Proc. IEEE Antennas and Propag. Soc. Int. Symp., South Carolina, Jun. 1-5, 2009.
[36]M. S. Sarto, “Hybrid MFIE/FDTD analysis of the shielding effectiveness of a composite enclosure excited by a transient plane wave,” IEEE Trans. Magnetics, vol. 36, pp. 946-950, 2000.
[37]C. L. Holloway, M. S. Sarto, and M. Johansson, “Analyzing carbon-fiber composite materials with equivalent-layer models,” IEEE Trans. Electromagn. Compat., vol. 47, pp. 833-844, 2005.
[38]P. B. Jana, A. K. Mallick, and S. K. De, “Effects of sample thickness and fiber aspect ratio on EMI shielding effectiveness of carbon fiber filled polychloroprene composites in the X-band frequency range,” IEEE Trans. Electromagn. Compat., vol. 34, no. 4, pp. 478-481, Nov. 1992.
[39]I. M. De Rosa, F. Sarasini, M. S. Sarto, and A. Tamburrano, “EMC impact of advanced carbon fiber/carbon nanotube reinforced composities for nex-generation aerospace applications,” IEEE Trans. Electromagn. Compat., vol. 50, no. 3, pp. 556-563, Aug. 2008.
[40]C. Mitrano, A. Balzano, M. Bertacca, M. Flaccavento, and R.
68
Mancinelli, “CFRP-based broad-band radar absorbing materials,” Radar Conf., 2008.Radar’08.IEEE, May 26-30, 2008.
[41]C. P. Neo and V. K. Varadan, “Optimization of carbon fiber composite for Microwave absorber,” IEEE Trans. Electromagn. Compat., vol. 46, no. 1, pp. 102-106, 2004.
[42]M. Born and E. Wolf, Principles of Optics, Pergamon Press, New York, 1959, pp. 84-101.
[43]P. P. Ewald, Dispersion Doppelbrochung Von Elecktromengittern, Disseration, Munchen, 1912; ,”Theorie der dispersion,” Annalen Der Physik, vol. 49, pp. 1-38, 1916.
[44]C. W. Oseen, “Uber die wechselwirkung zwischen zwei elektrischen dipolen und uber die drehung der polarisationsebene in kristallen und flussigkeiten,” Annalen Der Physik, vol. 48, pp. 1-58, 1915.
[45] J. A. Morrison and M. J. Cross, “ Scattering of a plane electromagnetic waves by axisymmetric raindrops,” Bell System Tech. J., vol. 53, pp. 955-1019, 1974.
[46]R. Ruppin, “calculation of electromagnetic energy absorption in prolate spheroids by the point-match method, “ IEEE Trans. Microw. Theory Tech., vol. MTT-26, pp. 87-90, 1978.
[47]R. F. Harrington, Field Compution by Moments Method, McGraw-Hill, New York, 1968.
[48]M. F. Iskander, H. Y. Chen, and J. E. Penner, "Optical scattering and absorption by branched chains of aerosols," Appl. Opt., vol. 28, no. 15, pp. 3083-3091, 1989.
[49]H. Y. Chen, M. F. Iskander, and J. E. Penner, "Light scattering and absorption by fractal agglomerates of smoke aerosols," J. Modern Opt., vol. 37, no. 2, pp. 171-181, 1990.
[50]D. P. Lin and H. Y. Chen, "Volume integral equation solution of extinction cross section by raindrops in the range 0.6~100 GHz," IEEE Trans. Antennas Propag., vol. 49, no. 3, pp. 494-499, March 2001.
[51]P. P. Silvester and G. Pelosi, Finite Elements for wave Electromagnetics, IEEE Press, New York, 1994.
[52]H. Y. Chen, I. Y. Tarn, and Y. J. Hwang, "Infrared extinction of the power of brass 70Cu/30Zn calculated by the FDTD and turning bands methods," IEEE Trans. Geosci. Remote Sens., vol. 33, no. 6, pp. 1321-1324, November 1995.
[53]D. E. Livesay and K. M. Chen, “Electromagnetic fields induced inside arbitrarily shaped biological bodies,” IEEE Trans. Microw. Theory Tech., vol. MTT-22, no. 12, pp. 1273-1280, Dec. 1974.
[54]K. Karimullah, Theoretical and Experimental Study of the Proximity Effects of Thin-Wire Antenna in Presence of Biological Bodies. Dissertation, Michigan State University, Michigan, 1979.
69
[55]L. H. Lafara, Computer Method for Science and Engineering. Hayden, New York, 1973, pp. 148-157.
[56]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag., vol. AP-14, no. 5, pp. 302-307, 1966.
[57]G. Matheron, “The intrinsic random functions and their applications,” Adv. Appl. Prob. vol. 5, pp. 439-468, 1973.
[58]Q. H. Tran, L. Jannaud, and P. Adler, “Coda spectral powder and apparent attenuation factor of acoustic waves in 3-D random media,” J. Acoust. Soc. Am. vol. 94, no. 4, pp. 2397-2407, 1993.
[59]S. I. Ghobrial, “Effect of hydroscopic water on dielectric constant of dust at X-band,” Electron. Lett., vol. 16, pp. 393-394, 1980.
[60]A. J. Ansari and B.G. Evans, “Microwave propagation in sand and dust storms,” IEE Proc. F. Commun., Radar & Sigal Process., vol. 129, pp. 315-322, 1982.
[61]H. M. Al-Rizzo and H. T. Al-Hafid, “Measurement of the complex dielectric constant of sand and dust particles at 11GHz,” IEEE Trans. Instrum. Meas., vol. 37, no. 1, pp. 110-113, March 1988.
[62]H. C. Van de Hulst, Light Scattering by Small Particle. New York: John Wiley & Sons, 1957, page 16.
[63]S. I. Ghobrial, “The effect of sand storms on microwave propagation,” in Proc. Nat. Telecommun. Conf. Houston, Texas, 1980, 2, pp. 43.5.1-43.5.5.
[64]S. haddad, M. J. H. Salman, and R. K. Jha, “Effects of dust/sand storms on some aspects of microwave propagation,” Pro. URSI Comm. F1983 Symp. Lourian, Belgium, June 1983, pp. 153-162.
[65]D. R. Row, M. A. Nouh, K. H. Al-Dowalia, and M. E. Mansour, “Indoor-outdoor relationship of suspended particulate matter in Riyadh, Saudi Arabia,” J. Air Pollut. Control Assoc., vol. 35, no. 1, pp. 24-26, 1985.
[66]Z. Levin, J. H. Joseph, and Y. Mekler, “Properties of Saharav (Khamsin) dust- comparison of optical and direct sampling data,” J. Atmosph. Sci., vol. 37, pp. 882-891, 1980.
[67]E. M. Patterson and D. A. Gillette, “Commonalities in measured size distribution for aerosols having a soil-derived component,” J. Geoph. Res., vol. 82, pp. 2074-2082, 1977.
[68]S. U. Park and H. J. In, “ Parameterization of dust emission for the simulation of the yellow sand (Asian dust) event observed in March 2002 in Korea,” J. Geoph. Res., vol. 108, no. D19, 4618, pp. ACH 9-1-ACH 9-21, 2003.
[69]H. J. In and S. U. Park, “The soil particle dependent emission parameterization for an Asian dust (Yellow Sand) observed in Korea in April 2002,” Atmosph. Environ., vol. 37, pp. 4625-4636, 2003.
70
[70]S. U. Park and E. H. Lee, “Parameterization of Asian dust (Hwangsa) particle-size distributions for use in dust emission models,” Atmosph. Environ., vol. 38, pp. 2155-2162, 2004.
[71]A. S. Ahmed, “Role of particle-size distributions on millimeter-wave propagation in sand/dust storms,” IEE Proc. vol. 134, Pt. H, no. 1, pp. 55-59, Feb. 1987.
[72]D. E. Livesay and K. M. Chen, “Electromagnetic fields induced inside arbitrarily shaped biological bodies,” IEEE Trans. Microw. Theory Tech., vol. MTT-22, no. 12, pp. 1273-1280, Dec. 1974.
[73]K. Karimullah, Theoretical and Experimental Study of the Proximity Effects of Thin-Wire Antenna in Presence of Biological Bodies. Dissertation, Michigan State University, Michigan, 1979.
[74]L. H. Lafara, Computer Method for Science and Engineering. Hayden, New York, 1973, pp. 148-157.
[75] X. Y. Dong, H. Y. Chen, and D. H. Guo, “Microwave and millimeter-wave attenuation in sand and dust storms,” accepted, IEEE Antennas Propag. Letts., May 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔