跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭司圓
研究生(外文):Shih-Yuan Cheng
論文名稱:攜帶式X-射線螢光光譜儀於鑑識科學上的應用-煙火藥及玻璃樣品
論文名稱(外文):Forensic Application of Portable X-ray Fluorescence Spectrometer: Firework and Glass Samples
指導教授:陳用佛陳用佛引用關係
指導教授(外文):Yung-Fou Chen
學位類別:碩士
校院名稱:中央警察大學
系所名稱:鑑識科學研究所
學門:軍警國防安全學門
學類:警政學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:163
中文關鍵詞:攜帶式X-射線螢光光譜儀煙火藥玻璃爆裂物主要元素初步篩檢
外文關鍵詞:Portable X-ray Fluorescence Spectrometerfireworkglassexplosivesmajor elementspreliminary screen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
攜帶式X-射線螢光光譜儀 (PXRF) 是一種可提供樣品定性及半定量資訊的元素分析方法,近年來有許多學者使用PXRF分析物質的元素含量。反觀鑑識科學領域中,PXRF尚未被廣泛地應用。本篇論文係利用PXRF發展一套方法,可以快速地分析煙火藥及玻璃樣品。
本研究有兩個目的,分別是發展煙火藥的分析方法及建立一套可初步分辨玻璃的快速分析方法。
首先,本研究蒐集 19 種市面常見爆竹煙火,採取未燃放前的粉狀樣品以PXRF進行元素分析。大多數的樣品可偵測到K、S、Ca、Fe、Ti、Ba、Sr、Cu、Mn等元素,分別來自各種氧化劑。我們可利用集群分析法將這些煙火樣品分為六個群集。利用PXRF快速、非破壞性又安全的方法分析煙火藥製成的爆裂物是可行的,並且這些資訊可以即時提供執法人員偵查的方向。本研究的結果顯示這篇論文於土造爆裂物的應用上有其重要的價值,這項方法可進一步提供給其他鑑識單位實驗室做為參考。
另外我們利用PXRF分析 27種玻璃樣品。除了主要元素 (Si、O、Ca、Al、Na、O) 外,大部分的玻璃樣品偵測到含有微量Sr、Rb、K、Fe和Sn。某些元素例如Fe、K、Zr、Sr在不同的玻璃中含量變化較大,另一些元素例如Th則相反。在 27 個玻璃樣品所產生的8775種配對中,本研究可初步分辨 96.7 % 的配對。這個結果顯示本研究的新方法可初步篩檢玻璃樣品。
Portable X-ray Fluorescence Spectrometer (PXRF) is a qualitative and semi-quantitative elemental analysis method. Recently, many researches using PXRF to analyze the element content of materials have been published. PXRF does not extensively apply in forensic science yet, this study is devoted to rapid analyze firework and glass samples by PXRF.
The purposes of this study are two-fold. To develop procedures of firework analysis and to construct a rapid method of glass preliminary discrimination.
Firstly, we analyzed 19 firework samples by PXRF. Most samples contain K, S, Ca, Fe, Ti, Ba, Sr, Cu and Mn. Those elements are from varies oxidizing agents. These firework samples could be discriminated into six different groups by Hierarchical Cluster Analysis (HCA). The fast, non-destructive and safe method shows it is feasible to use PXRF detecting explosives which is made by fireworks. That information could provide the investigatory direction to law enforcement agent. These results indicate this study have a lot of value to the analysis of home-made explosives application. Moreover, the results will be the reference of other forensic lab.
Secondly, we analyzed 27 glass samples by PXRF. Besides major elements (ex: Si, O, Ca, Al, Na), most glass samples contain trace Sr, Rb, K, Fe and Sn. Some elements like Fe, K, Zr, Sr vary in different samples, other element like Th are stable in every samples. We preliminary discriminated 96.7% of 8,775 pair comparisons create by 27 glass samples. This study provides a new method in preliminary screen analysis of glass.
中文摘要 I
Abstract II
Table of Contents III
List of Figures VI
List of Tables X
List of Tables X
1. Introduction 1
1.1. Research Motivation 1
1.2. Research Purpose 2
2. Literature Review 2
2.1. Principle of Portable X-ray Fluorescence 2
2.1.1. Portable X-ray Fluorescence 2
2.1.2. Instrumentation of PXRF 4
2.2. Advantages and Disadvantages of Portable X-ray Fluorescence 8
2.2.1 Advantages 8
2.2.2. Disadvantages 8
2.3. Applications of Portable X-ray Fluorescence Spectrometer 9
2.3.1. General Applications 9
2.3.2. Forensic Applications 10
2.4. Comparisons of Portable X-Ray Fluorescence and Other Instrumentations 12
3. Methodology 14
3.1. Instrumentation 14
3.2. Materials 14
3.2.1. Firework Samples 14
3.2.2. Glass Samples 16
3.3. Methods 17
3.3.1. Firework Samples Preparation 17
3.3.2. Glass Samples Preparation 17
3.3.3. Analysis by PXRF 17
3.3.4. Statistics Analysis 18
4. Results and Discussion 19
4.1. Firework Samples 19
4.1.1. Powder1 19
4.1.2. Powder2 20
4.1.3. Powder3 22
4.1.4. Powder4 27
4.1.5. Powder5 28
4.1.6. Powder6 30
4.1.7. Powder7 31
4.1.8. Powder8 32
4.1.9. Powder9 36
4.1.10. Powder10 37
4.1.11. Powder11 39
4.1.12. Powder12 42
4.1.14. Powder14 46
4.1.15. Powder15 48
4.1.16. Powder16 50
4.1.17. Powder17 52
4.1.18 Powder18 57
4.1.19 Powder19 59
4.1.20. Hierarchical Cluster Analysis 60
4.1.21. Elements of Firework Samples 67
4.1.22. Pyrotechnic Effect of Firework Samples 71
4.2. Glass Samples 74
4.2.1. Standard Glass Samples 74
4.2.2. Glass 1 81
4.2.3. Glass 2 81
4.2.4. Glass 3 82
4.2.5. Glass 4 82
4.2.6. Glass 5 83
4.2.7. Glass 6 83
4.2.8. Glass 7 84
4.2.9. Glass 8 85
4.2.10. Glass 9 86
4.2.11. Glass 10 86
4.2.12. Glass 11 87
4.2.13. Glass 12 87
4.2.14. Glass 13 88
4.2.15. Glass 14 88
4.2.16. Glass 15 89
4.2.17. Glass 16 89
4.2.18. Glass 17 90
4.2.19. Glass 18 90
4.2.20. Glass 19 91
4.2.21. Glass 20 91
4.2.22. Glass 21 92
4.2.23. Glass 22 92
4.2.24. Glass 23 93
4.2.25. Glass 24 93
4.2.26. Glass 25 94
4.2.27. Glass 26 94
4.2.28. Glass 27 95
4.2.29. Glass 28 95
4.2.30. Glass 29 96
4.2.31. Discriminate of Glass Samples 97
5. Conclusions 100
5.1. Firework Analysis with PXRF 100
5.2.Glass Analysis with PXRF 100
6. Future Prospective 101
Reference 102
Appendix A: The Appearance of Fireworks and Insider Powders 104
Appendix B: The Detail Analysis Results of Firework Samples 131
Appendix C: The Analysis Results of NIST SRM 145
Appendix D: The Detail Analysis Results of Glass Samples 149
1.Craig, N.; Speakman, R.; Popelkafilcoff, R.; Glascock, M.; Robertson, J.; Shackley, M.; Aldenderfer, M., Comparison of XRF and PXRF for analysis of archaeological obsidian from southern Perú. Journal of Archaeological Science 2007, 34 (12), 2012-2024.
2.Potts, P. J.; West, M., Portable X-ray Fluorescence Spectrometry: Capabilities for In Situ Analysis. The Royal Society of Chemistry: UK, 2008; p 291.
3.羅立強、詹秀春、李國會,X射線螢光光譜儀,化學工業出版社,北京,2008。
4.Radu, T.; Diamond, D., Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. Journal of Hazardous Materials 2009, 171 (1-3), 1168-1171.
5.Palmer, P. T.; Jacobs, R.; Baker, P. E.; Ferguson, K.; Webber, S., Use of Field-Portable XRF Analyzers for Rapid Screening of Toxic Elements in FDA-Regulated Products. J. Agric. Food Chem 2009, (57), 2605-2613.
6.Kalnicky, D. J.; Singhvi, R., Field portable XRF analysis of environmental samples. Journal of Hazardous Materials 2001, 83, 93-122.
7.Chou, J.; Clement, G.; Bursavich, B.; Elbers, D.; Cao, B.; Zhou, W., Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry. Environmental Pollution 2010, 158 (6), 2230-2234.
8.Figi, R.; Nagel, O.; Tuchschmid, M.; Lienemann, P.; Gfeller, U.; Bukowiecki, N., Quantitative analysis of heavy metals in automotive brake linings: A comparison between wet-chemistry based analysis and in-situ screening with a handheld X-ray fluorescence spectrometer. Analytica Chimica Acta 2010, 676 (1-2), 46-52.
9.Trombka, J. I.; Schweitzer, J.; Selavka, C.; Dale, M.; Gahn, N.; Floyd, S.; Marie, J.; Hobson, M.; Zeosky, J.; Martin, K.; McClannahan, T.; Solomon, P.; Gottschang, E., Crime scene investigations using portable, non-destructive space exploration technology. Forensic Science International 2002, 129 (1), 1-9.
10.Nakanishi, T.; Nishiwaki, Y.; Miyamoto, N.; Shimoda, O.; Watanabe, S.; Muratsu, S.; Takatsu, M.; Terada, Y.; Suzuki, Y.; Kasamatsu, M.; Suzuki, S., Lower limits of detection of synchrotron radiation high-energy X-ray fluorescence spectrometry and its possibility for the forensic application for discrimination of glass fragments. Forensic Science International 2008, 175 (2-3), 227-234.
11.Sano, T.; Suzuki, S., Basic forensic identification of artificial leather for hit-and-run cases. Forensic Science International 2009, 192 (1-3), 27-32.
12.Almirall, J. R.; Trejos, T., Advances in the forensic analysis of glass fragments with a focus on refractive index and elemental analysis. Forensic Science Review 2006, 18 (2), 73-96.
13.Naes, B.; Umpierrez, S.; Ryland, S.; Barnett, C.; Almirall, J., A comparison of laser ablation inductively coupled plasma mass spectrometry, micro X-ray fluorescence spectroscopy, and laser induced breakdown spectroscopy for the discrimination of automotive glass. Spectrochimica Acta Part B: Atomic Spectroscopy 2008, 63 (10), 1145-1150.
14.Schweitzer, J.; Trombka, J.; Floyd, S.; Selavka, C.; Zeosky, G.; Gahn, N.; McClanahan, T.; Burbine, T., Portable generator-based XRF instrument for non-destructive analysis at crime scenes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2005, 241 (1-4), 816-819.
15.Es, A. v.; Koeijer, J. d.; Peijl, G. v. d., Discrimination of document paper by XRF, LA–ICP–MS and IRMS using multivariate statistical techniques. Science and Justice 2009, 49, 120-126.
16.徐健民、孟憲輝、張維敦、卓琍玲、王勝盟,分析化學在鑑識科學上之應用,化學 2005,63 (1),1-54。
17.Chaplin, T. D.; Clark, R. J. H.; Martinón-Torres, M., A combined Raman microscopy, XRF and SEM–EDX study of three valuable objects – A large painted leather screen and two illuminated title pages in 17th century books of ordinances of the Worshipful Company of Barbers, London. Journal of Molecular Structure 2010, 976 (1-3), 350-359.
18.朱萬澤,攜帶式X光螢光分析儀應用於作業環境砷暴露成效評估,國立台灣大學職業醫學與工業衛生研究所論文,2004。
19.林震岩,SPSS的操作與應用,智勝文化事業有限公司,台北市,2010,頁183-211。
20.Peinado, F. M.; Ruano, S. M.; González, M. G. B.; Molina, C. E., A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF). Geoderma 2010, 159 (1-2), 76-82.
21.潘功配,高等煙火學,哈爾濱工程大學出版社,哈爾濱,2007,頁254-258。
22.張尊評,我國常見火工產品殘跡之鑑識分析,中央警察大學鑑識科學研究所論文,2008。
23.駱宜安,證物之物理性質在鑑識科學上之應用:以玻璃、土壤為例,中央警察大學,桃園,2007。
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top