跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 07:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡逢霖
研究生(外文):Feng- Lin Tsai
論文名稱:以元素分析追蹤台灣地區大花鬼針草種子及土壤之地理來源
論文名稱(外文):Sourcing the seeds of Bidens pilosa and soil samples in Taiwan area by elemental analysis
指導教授:楊秋和楊秋和引用關係
指導教授(外文):Chiou-Herr Yang
學位類別:碩士
校院名稱:中央警察大學
系所名稱:鑑識科學研究所
學門:軍警國防安全學門
學類:警政學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:102
中文關鍵詞:大花鬼針草集群分析主成份分析感應耦合電漿質譜(ICP-MS)元素分析
外文關鍵詞:Bidens pilosacluster analysisprincipal component analysisinductively coupled plasma mass spectrometry (ICP-MS)elemental analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
路卡交換原理提到微物跡證可連結犯罪現場、嫌犯及被害人,因為這些微物在犯罪現場可能以各種形式接觸而遺留。戶外現場最常見到的跡證為土壤及植物。大花鬼針草(Bidens pilosa L. var. radiata) 具有倒刺的黑色瘦果黏附力強,不易脫落,易沾附於經過植株之動物或人類身上,而且廣泛分佈台灣中低海拔,只要在野外刑案現場或戶外行經路徑,皆有機會沾附其種子。鞋印及輪胎印痕可以類化並個化為跡證,而鞋底和輪胎溝痕中常沾附泥土,這些泥土證物過去只能用在印痕跡證上,因其量少不易用密度及粒徑分析而無法分辨其來源。
本實驗採集29地區的鬼針草植株及土壤,並將之微波消化後再利用ICP-MS分析28種元素。以相關性分析發現土壤及鬼針草之間元素相關係很低,Cd的相關係數最高達0.51,可能與元素在土壤中的型態有關;而鬼針草種子及葉之間的相關係數在20種元素中有12種元素為正相關,其中相關係數超過0.8有6種元素(Na、Ga、Rb、Sr、Cd及Ba)。以集群分析則發現土壤可分為六群、大花鬼針草種子可分為三大群,而葉則可分為三大群,各樣本大致上可依地理區域或海邊與陸地分群,而主成份分析發現土壤、鬼針草種子及葉皆可分為陸地及海邊兩群。因此若取得土壤或大花鬼針種子定量無機元素後,可用主成份分析判斷來源是海邊或陸地,再利用群集分析推測地理或地層位置。
同一地點的三個樣本在以集群分析可發現土壤的分群效果良好,這表示在100公尺內的土壤元素及濃度變化不大,具有明顯地理特徵及穩定性。若發生類似案件只需要知道大概位置,並採取該地土壤比對證物土壤,便可推測可能土壤來源。然而大花鬼針草種子及葉的同一地點的三個樣本雖有類似的分群,但效果沒有土壤明顯,可能與植株生長情況有關。
According to Locard’s exchange principle, trace evidences can be linked to the crime scene, suspects and victims. These small items can be left at the crime scene. The most common trace evidences in outdoor scene are soil and plants. Bidens pilosa L. var. radiata is a popular exotic weed at lower altitudes in Taiwan. Its fruits are black achenes with the barb; that therefore, it is easy to spread by sticking to animal or mankind. The shoe and tire prints can be classified and characterized, but soil in shoe or vehicle grooves is often ignored. Soil in the groove is too little to compare the size fraction and density between a questioned sample and its samples of known origin.
We collected seed, leaves and soil samples from 29 sites of different region in Taiwan. All of the samples were digested by microwave and the concentration of 28 elements were determined by ICP-MS. There is low correlation between elements in the soil and that of Bidens pilosa. The highest correlation coefficient element is Cd (0.51), which may be related to the form of elements in the soil. Twelve elements are postive correlation among twenty elements between soil and Bidens pilosa. The correlation coefficient of six elements (Na, Ga and Rb, Sr., Cd and Ba) is over 0.8. The results showed that the collected soil can be classified into six groups, the collected seeds of Bidens pilosa can be classified into three groups, and the collected leaves of Bidens pilosa can be classified into three groups by the cluster analysis. The principal component analysis showed that the collected soil, seeds and leaves of Bidens pilosa can be classified into the land and beach group.
Soil specimens from the same location can be classified in the same group by cluster analysis, that means soil elements concerntration is stable and with geographical features. We also performed the same analysis for seed and leaves samples that were collected from the same location. Results shown that seed specimens can’t be classified into close group that were found among soil samples collected from the same location. This indicated that there is higher concentration variation among seeds specimens compared to that of soil sample. It may be became that seeds were collected from plants with different age.
中文摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VII
第一章 前言 1
1.1.研究動機 1
第二章 文獻探討 2
2.1刑事植物及土壤之研究 2
2.2元素在土壤及植物間轉移型態 4
2.3無機元素分析在刑事科學研究 5
2.4感應耦合電漿質譜法 7
2.4.1前言 7
2.4.2基本原理 7
2.4.3感應耦合電漿離子源 7
2.4.4干擾效應 8
2.4.4.1光譜性干擾(質量重疊干擾) 8
2.4.4.2非光譜性干擾 9
2.4.5儀器最佳化 9
第三章 材料與方法 10
3.1實驗材料 10
3.2實驗方法 11
3.2.1容器清潔 11
3.2.2背景溶液製備 11
3.2.3調機液配製 11
3.2.4 ICP-MS儀器參數 11
3.2.4.1電漿條件 11
3.2.4.2調機 11
3.2.4.3數據收集參數 12
3.2.5實驗方法品管分析 12
3.2.5.1檢量線建立 12
3.2.5.2方法偵測極限(MDL) 12
3.2.5.3樣品添加回收率測試(additional recovery) 13
3.2.5.4微波消化 13
3.2.5.5樣品分析 13
3.2.5.6分析方法 14
第四章 結果 15
4.1方法偵測極限及定量極限 15
4.2標準品測量數值 15
4.3添加回收率 15
4.4元素含量 15
4.5相關性分析 16
4.6集群分析 16
4.7主成份分析 17
4.8各點樣本、各點間及分群檢定 18
第五章 討論 19
5.1影響元素在土壤及鬼針草相關性因素 19
5.2地理位置及地質對分類影響 20
5.3元素對分類影響 21
5.4元素與地點 22
第六章 結論 24
參考文獻 26
1. 柳國蘭 台灣地區鬼針草(Bidens pilosa)DNA特徵之研究。中央警察大學 鑑識科學研究所 碩士論文2001年。
2. 吳佩璇 鬼針草STR基因族群分布研究。中央警察大學 學士畢業專題 2003年。
3. 蔡麗琴 植物DNA分析於鑑識科學應用之研究。國立臺灣師範大學 生命科學研究所 博士論文 2006年。
4. Weckerle B, Richling E, Heinrich S, Schreier P. Origin assessment of green coffee (Coffea arabica) by multi-element stable isotope analysis of caffeine. Anal Bioanal Chem. 2002; 374(5): 886-890.
5. Binette MJ, Lafontaine P, Vanier M, Ng LK. Characterization of Canadian cigarettes using multi-stable isotope analysis by gas chromatography-isotope ratio mass spectrometry. J Agric Food Chem. 2009年, 57(4):1151-1155.
6. Kurashima N, Makino Y, Sekita S, Urano Y, Nagano T. Determination of origin of ephedrine used as precursor for illicit methamphetamine by carbon and nitrogen stable isotope ratio analysis. Anal Chem. 2004; 76(14):4233-4236.
7. Kurashima N, Makino Y, Urano Y, Sanuki K, Ikehara Y, Nagano T. Use of stable isotope ratios for profiling of industrial ephedrine samples: application of hydrogen isotope ratios in combination with carbon and nitrogen. Forensic Sci Int. 2009; 189(1-3): 14-18.
8. Shibuya EK, Souza Sarkis JE, Neto ON, Moreira MZ, Victoria RL. Sourcing Brazilian marijuana by applying IRMS analysis to seized samples. Forensic Sci Int. 2006; 160(1): 35-43.
9. Hurley JM, West JB, Ehleringer JR. Tracing retail cannabis in the United States: Geographic origin and cultivation patterns. Int J Drug Policy. 2009; 21(3): 222-228.
10. Casale JF, Ehleringer JR, Morello DR, Lott MJ. Isotopic fractionation of carbon and nitrogen during the illicit processing of cocaine and heroin in South America. J Forensic Sci. 2005; 50(6): 1315-1321.
11. 莊偉仁 以穩定同位素質譜法追蹤台灣地區大花鬼針草種子之地理來源。 中央警察大學 碩士論文 2010年。
12. Carla IR, Rodrigo M, Marco M, Miguel R, Nogueira JMF, Ma´guas C. Stable isotope analysis for green coffee bean: A possible method for geographic origin discrimination. J Food Compos Anal. 2009; 22(5): 463-471.
13. 黃禎虹 台灣東部超基性與酸性母岩土壤中巨量、微量與稀有元素濃度之比較。屏東科技大學 碩士論文 2007年。
14. Mitchell RL. Trace elements, in " Chemistry of the Soil.". New York : Van Nostrand Reinhold. 頁 253-285.
15. Well N. Total elements in topsoils from igneous rock: an extension of geochemistry. J Soil Sci. 1960; 11: 409-424.
16. Bove MA, Ayuso RA, De Vivo B, Lima A, Albanese S. Geochemical and isotopic study of soils and waters from an Italian contaminated site: Agro Aversano (Campania). J Geochem Explor. 2011; 109: 38-50.
17. Cheng Q. Spatial and scaling modeling for geochemical anomaly separation. J Geochem Explor. 1999; 65: 175-194.
18. Cicchella D, De Vivo B, Lima A. Background and baseline concentration values of elements harmful to human health in the volcanic soils of the metropolitan and provincial area of Napoli (Italy). Geochem Explor Environ Anal. 2005; 5: 29–40.
19. Lima A. Evaluation of geochemical background at regional and local scales by fractal filtering technique: case studies in selected Italian areas. Environ Geochem. 2008; 135-152.
20. Pye K, Blott SJ, Croft DJ, Witton SJ. Discrimination between sediment and soil samples for forensic purposes using elemental data:An investigation of particle size effects. Forensic Sci Int. 2007; 167:30-42.
21. Rule JH. Trace metal cation adsorption in soils: selective, chemical extractions and biological availability. In: Dabrowski,Adsorption and its Applications in Industry and Environmental. Amsterdam : Elsevier, 1999. 頁 319– 349.
22. Zalidis G, Matisi N. Forms and distribution of heavy in soils of Axios Dalta of Northern Gressce. Comun Soil Sci plant Anal. 1999; 30: 817-827.
23. Baker AJM, Brooks RR. Terrestrial highr plants which hyperaccumulate metallic elements: a review of their distrubution ecology and phytochemistry. Biorecovery. 1989; 1: 81-126.
24. McGrath SP, Zhao FJ. Phytoextration of metals and metalloids from contaminated soils. Cur Poin Biotechol. 2003; 14: 277-282.
25. Blanchard DB, Harrison SH. Trace elemental profiles and ratios determined by instrumental neutron activation analysis for fine paper identification. J Forensic Sci. 1978; 23(4): 679–86.
26. Polk DE, Attard AE, Giessen BC. Forensic characterization of papers. J Forensic Sci. 1977; 22(3): 524-33.
27. McGaw EA, Szymanski DW, Smith RW. Determination of Trace Elemental. J Forensic Sci. 2009; 54(5):1163-1170.
28. Brushwood DE, PerKins Jr HH. Determining the metal content of cotton. Anal Tech. 1994; 26: 32-35.
29. Brushwood DE. Survey of metals found in non-demestic raw cottons, in: Proceedings of the beltwide Cotton conference 2. 2000; 1546-1549.
30. Gallo JM, Almirall JR. Elemental analysis of white cotton fiber evidence using solution ICP-MS. Forensic Sci Int. 2009; 190: 52-57.
31. Golia EE, Dimirkou A, Mitsios IK. Heavy-metal concentration in tobacco leaves in relation to their available soil fractions. Commun Soil Sci Plant Anal. 2009; 40: 106-120.
32. Pérez-Bernal JL, Amigo JM, Fernández-Torres R, Bello MA, Callejón- Mochón M. Trace-metal distribution of cigarette ashes as marker of tobacco brands. Forensic Sci Int. 2011年, 204:119–125.
33. Houk RS, Fassel VA, Glesch GD, Svec HJ, Gray AL, Taylor CE. Schnelle und simultane Analyse geringster Probenmengen - der Wunsch jedes analytischen Chemikers. Anal Chem. 1980; 52:2283.
34. Houk RS. Elemental and Isotopic Analysis by ICP-MS. Acc Chem Res. 1994; 27: 333-339.
35. 黃立心、林金全 ICP-MS的基本原理。 科儀新知1998年,20(1):5-12。
36. 陳鑫昌、丁望賢 質譜技術之原理與應用。化工技術 2003年,11(2): 144-164。
37. Thomas R. Review of Interferences. Practical Guide to ICP-MS. Gaithersburg, Maryland,USA : Marcel Dekker, Inc., 2004; 129-163.
38. Jiang SJ, Houk RS, Stevens MA. Alleviation of overlap interferences for determination of potassium isotope ratios by inductively coupled plasma mass-spectrometry. Anal Chem. 1988; 60-11:1217-1221.
39. Wang JS, Shen L, Sheppard BS, Evans EH, Caruso JA, Fricke FL. Effect of ion-lens tuning and flow injection on non-spectroscopic matrix interferences in inductively coupled plasma mass spectrometry. J Anal At Spectrometry. 1990; 5: 445-449.
40. 張儀盛、唐宏怡 感應偶和電漿質譜儀。 科儀新知 1988年, 10-3:81-90.
41. 環境檢驗方法偵測極限測定指引,NIEA-PA107。
42. Application note / reference method for microwave digestion, SW846-3052.
43. Application note / reference method for microwave digestion, coffee beans.
44. Ahumada I, Mendoza J, Navarreta E, Scar A. Sequential extraction of heavy metals in soils irrgated with wateswater. Commun Soil Sci Plant Anal. 1999; 30: 2043-2054.
45. Chojnacka K, Chojnacki A, Go´recka H, Go´recki H. Bioavailability of heavy metals from polluted soils to plants. Sci Total Environ. 2005; 337: 175– 182.
46. Kabata-Pendias A. Soil–plant transfer of trace elements—an environmental issue. Geoderma. 2004; 122: 143-149.
47. Yang X, Fenfa Y, He Z, Stoffella PJ. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Tra Elem Med Bio. 2005; 18: 339-353.
48. 經濟部中央地質調查所。http://gis.moeacgs.gov.tw/gwh/gsb97-1/ sys8/index.cfm.
49. 包國輝 日本關西及台灣東部地區蛇紋岩土壤性質之比較。屏東科技大學 碩士論文 2009年。
50. Manaka M. Amount of amorphous materials in relationship to arsenic, antimony, and bismuth concentrations in a brown forest soil. Geoderma. 2006; 136:75–86.
51. Das AK, Chakraborty R, Cervera ML, Guardia M. Analytical techniques for the determination of bismuth in solid environmental samples. Trends Anal Chem. 2006; 25(6): 599-608.
52. Vetter J. Lithium content of some common edible wild-growing mushrooms. Food Chem. 2005; 90: 31-37.
53. Roca-Perez L, Gil C, Cervera ML, Gonzálvez A, Ramos-Miras J, Pons V, Bech J, Bolud R. Selenium and heavy metals content in some Mediterranean soils. J Geochem Explor. 2010; 107: 110-116.
54. Mielke HW, Gonzales CR, Smith MK., Mielke PW. Quantities and associations of lead, zinc, cadmium, manganese, chromium, nickel, vanadium, and copper in fresh Mississippi delta alluvium and New Orleans alluvial soils. Sci Total Environ. 2000; 246: 249-259.
55. Chiang KY, Wang YN, Wang MK. Physical and chemical properties, and distribution of metal specis in rhizosphere and bulk soils of chamaecyparis formosensis at Chi-Tou region. Quart J Chinese Forestry. 2002; 35(3): 255-264.
56. Zhang W, Zhang F, Shen Z, Liu Y. Changes of H+ pumps of tonoplast Vesicle from wheat roots in vivo and in Vitro under aluminum treatment and effect of calcium. J Plant Nutr. 1998; 21: 2515-2526.
57. Alvarez E, Monterroso C, Fernandez Marcos ML. Aluminium fractionation in Galicia (NW Spain) forest soil as related to vegetation and parent material. For Ecol Manage. 2002; 166:193-206.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top