跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周旻立
研究生(外文):Chou, Min-Li
論文名稱:微波V頻段功率放大器與混波器設計
論文名稱(外文):Microwave V-band Power Amplifier and Mixer Design
指導教授:董德國胡明智
指導教授(外文):Tung, Der-KuoHwu Ming-Jyh
口試委員:董德國胡明智桂平宇邱顯欽黃凡修
口試委員(外文):Tung, Der-KuoHwu, Ming-JyhKuei, Ping-YuChiu, Hsien-ChinHuang, Fan-Hsiu
口試日期:2012-07-10
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:電子工程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:41
中文關鍵詞:V頻段功率放大器混波器
外文關鍵詞:V-BandPower AmplifierMixer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本論文之研究擬開發分別操作於V頻段的功率放大器與混波器,分別以GaAs 0.15 μm pHEMT與90 nm CMOS製程技術設計,期望達成高效能、低成本目的。
功率放大器電路採用平衡式放大器架構,以提升輸出功率以及寬頻匹配等特性。此外在耦合器的設計上採用三維度垂直耦合方式設計縮小整體佈局面積,同時達到縮小晶片並且降低成本的目標。放大器模擬之增益為13.0 dB,3 dB頻寬為54.4 GHz~65.7 GHz,飽和輸出功率為18.6 dBm,輸出功率1 dB壓縮點為15.9 dBm在輸入功率3.5 dBm時,最高功率附加效率為13.6 %。量測部分由於直流偏壓設計瑕疵,使得結果不如預期,除錯內容討論於文中。
混波器電路操作頻率為60 GHz,中頻測試頻率為1 GHz,採用具有高轉換增益、高雜波抑制及高隔離度等特性的吉伯特混波器架構設計。平衡對非平衡轉換器設計於晶片中提供單端射頻與本地振盪器量測訊號轉換成差動訊號,搭配環繞於混波器電路的佈局等方式進行設計,及希望達到縮小整體佈局面積。混波器模擬結果可得到最高3.8 dB的轉換增益,並且具有超過10 GHz的射頻操作頻寬。
The circuits of power amplifier and mixer applied for V-band communications have been designed and fabricated by using GaAs 0.15 μm pHEMT and 90 nm CMOS technologies in this thesis. The circuit design is expected to achieve high gain and high output power performance.
The design of power amplifier (PA), for achieving high output power and broadband characteristics, is based on a balance circuit topology. To further reduce the layout area for the coupler design, the three-dimensional of vertical coupling mode was used in the PA circuit. The circuit exhibits the small-signal gain is 13.0 dB with 3-dB bandwidth between 54.4 GHz and 65.7 GHz. The maximum output power and P1dB are 18.6 dBm and 15.9 dBm respectively at an input power 3.5 dBm. The maximum PAE also can achieve to 13.6 %. Because of a design fault of DC feeding and RF bypassing, the measured results is out of expectancy.
For achieving the performances of high conversion gain, high noise suppression, and high isolation for the V-band mixer, the circuit topology is chosen based on a Gilbert cell structure, which is operated with radio frequency (RF) of 60 GHz and intermediate frequency (IF) of 1 GHz. The broadband baluns providing a single-to-differential signal transformation to RF and LO ports are designed around the mixer core for layout size reduction. The mixer exhibits a conversion gain of 3.8 dB and a RF bandwidth over 10 GHz in the simulation.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 vii
圖目錄 viii
1. 緒論 1
1.1 研究動機 1
1.2 論文架構 5
2. 功率放大器特性參數與設計方法 6
2.1 特性參數 6
2.2 設計方法與相關文獻 10
3. 平衡式功率放大器設計 14
3.1 電路架構與設計原理 14
3.2 模擬與量測結果 18
4. 混波器特性參數與設計方法 25
4.1 特性參數 25
4.2 設計方法與相關文獻 26
5. 吉伯特降頻混波器設計 29
5.1 電路架構與設計原理 30
5.2 模擬與量測結果 34
6. 結論 38
參考文獻 40
自傳 42
[1]Marcus M. and Pattan B., ”Millimeter Wave Propagation; Spectrum Management Implications,” Microwave Magazine, IEEE, Vol.6, Issue: 2, pp. 54-62, June 2005.
[2]Bourdoux A., Nsenga J., Van Thillo W., Horlin F. and Van der Perre L., “Air Interface and Physical Layer Techniques for 60 GHz WPANs,” Communications and Vehicular Technology, 2006 Symposium on, Vol. 2, pp. 1-6, Nov. 2006.
[3]http://www.wirelesshd.org/ (2012/07/05)
[4]Yang L., “60GHz: Opportunity for Gigabit WPAN and WLAN Convergence,” ACM SIGCOMM Computer Communication Review, Vol. 39, No.1, pp. 56-61, Jan. 2009
[5]Singh H., Hsu J., Verma L., Lee S.S., Chiu N., “Green Operation of Multi-Band Wireless LAN in 60 GHz and 2.4/5 GHz,” Consumer Communications and Networking Conference (CCNC), 2011 IEEE, pp. 787-792, Jan. 2011.
[6]Youngmin k., Yumin K., Jihoon K., Seokchul L., Jinho J., Kwangseok S., and Youngwoo K. “A 60 GHz Broadband Stacked FET Power Amplifier Using 130 nm Metamorphic HEMTs,” IEEE Microwave and Wireless Components Letters, IEEE, Vol. 21, No. 6, pp. 323-325, Feb. 2011
[7]LaRocca T., Liu J.Y.C., Chang M.C.F., “60 GHz CMOS Amplifiers Using Transformer-Coupling and Artificial Dielectric Differential Transmission Lines for Compact Design,” Solid-State Circuits, IEEE Journal of, Vol. 44, No.5, pp. 1425-1435, May 2009.
[8]Chan W.L., Long J.R., “A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply,” Solid-State Circuits, IEEE Journal of , Vol. 45, No.3, pp. 554-564, March 2010.
[9]Chin T.Y., Chang S.F., Chang C.C., Wu J.C., “A 24-GHz CMOS Butler Matrix MMIC for Multi-Beam Smart Antenna Systems,” Radio Frequency Integrated Circuits Symposium, 2008. RFIC 2008. IEEE, pp. 633-636, June 2008.
[10]Tsai J.H., Yang H.Y., Huang T.W., Wang H., “A 30-100 GHz Wideband Sub-Harmonic Active Mixer in 90 nm CMOS Tecnology,” Microwave and Wireless Component Letter, IEEE, Vol. 18, No. 8, pp. 1531-1309, Aug. 2008.
[11]Tsai J.H., Wu P.S., Lin C.S., Huang T.W., Chern J.G.J, Huang W.C., “A 25-75 GHz Broadband Gilbert-Cell Mixer Using 90-nm CMOS Technology,” Microwave and Wireless Component Letter, IEEE, Vol. 17, No. 4, pp. 247-249, Apr. 2007.
[12]Byeon C.W., Lee J.J., Song I.S., Park C.S., “A 60 GHz Current-Reuse LO-Boosting Mixer in 90 nm CMOS,” Microwave and Wireless Component Letter, IEEE, Vol. 22, No. 3, pp. 135-137, March 2012.
[13]Wei C.C., Chiu H.C., Hsu H.C., Feng W.S., Fu J.S., “Fully integrated 24 GHz differential active sub-harmonic mixer located in CMOS multi-layer Marchand baluns,” Microwaves, Antennas & Propagation, IET, Vol. 4, No. 11, pp.1789-1798, Nov. 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top