跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 04:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳渝叡
研究生(外文):Chen, Yuruei
論文名稱:微波輔助合成高分子微球及其吸附特性之研究
論文名稱(外文):Microwave-assisted Synthesis Of Polymer Microspheres And Study Of Their Adsorption Characteristic
指導教授:張章平葛明德葛明德引用關係
指導教授(外文):Chang, ChangpinGer, Mingder
口試委員:歐進祿胡文華林岳輝
口試日期:2012-05-16
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:官能性高分子微球微波輔助合成吸附作用貴金屬
外文關鍵詞:functional polymer microspheresmicrowave-assistedadsorptionprecious metal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在利用微波輔助加熱於無乳化劑乳化聚合系統,合成粒徑介於200至500nm之聚苯乙烯高分子微球,單體為苯乙烯、起始劑為過硫酸鉀(KPS)與2,2’-偶氮二異丁基脒二鹽酸鹽(V50)兩種。藉由掃描式電子顯微鏡(SEM)和光散射介面電位分析儀了解合成之聚苯乙烯微球其表面形貌、粒徑大小與分布和表面電位,傅立葉轉換紅外線光譜分析儀(FTIR)證實聚苯乙烯微球表面所含有之官能基。
實驗藉由改變不同微波加熱功率以及反應時間,觀察其對合成之聚苯乙烯微球粒徑分布與均一性之影響。實驗結果發現聚合系統St/KPS/V50/ H2O在微波功率400W、反應30分鐘,可製備出粒徑450nm、粒徑均一且分散性良好之聚苯乙烯微球。
高分子微球表面具有官能基是一種功能性之高分子,藉其表面之官能基可對金屬離子進行吸附。本實驗藉由改變金屬離子初始濃度與吸附時間,探討其對表面具不同官能基之聚苯乙烯微球之吸附能力和吸附效率之影響。高分子微球藉吸、脫附金屬離子,以得知高分子微球之再生能力。與其他離子進行吸附特性之比較,了解官能性微球對金屬離子之吸附選擇性。
Monodisperse polystyrene microspheres with diameters of 200-500 nm were prepared by emulsifier-free emulsion polymerization with microwave irradiation with potassium persulfate (KPS) and 2,2’-azobis(2-methylpropionamidine) dihydrochloride (V50) as initiator. The morphology, size, and size distribution of the polystyrene microspheres were characterized with scanning electron microscopy (SEM) and zeta potential analyzer, the functional groups of the polystyrene (PS) were characterized with fourier transform infrared (FTIR). The effects of the reaction time, power of microwave, and initiator concentration on the size and size distribution of the polystyrene microspheres were investigated.
Polymer microspheres with functional groups on the surface are kind of functional polymer, which adsorb metal ions via their functional groups on the microspheres surface. In this study, the effects of the adsorption operating conditions, such as: initial metal ion concentration and adsorption time were studied. The desorption of polymer microspheres were to understand their regeneration capability. Compared with other metal ions, to understand the selectivity of functional polymer microspheres.
誌謝 ............................................................................................................................... ii
摘要 .............................................................................................................................. iii
Abstract ......................................................................................................................... iv
目錄 ............................................................................................................................... v
表目錄 ......................................................................................................................... vii
圖目錄 .......................................................................................................................... ix
1. 緒論 ......................................................................................................................... 1
1.1前言 ...................................................................................................................... 1
1.2研究動機及目的 .................................................................................................. 3
2. 文獻回顧 ................................................................................................................. 5
2.1無乳化劑乳化聚合法 .......................................................................................... 5
2.1.1無乳化劑乳化聚合法成核機構.................................................................... 5
2.2微波加熱原理 ...................................................................................................... 7
2.2.1微波原理及特性 ............................................................................................ 7
2.2.2微波加熱與傳統加熱 .................................................................................... 8
2.3吸附理論 .............................................................................................................. 9
2.3.1吸附現象 ........................................................................................................ 9
2.3.2影響吸附之因素 .......................................................................................... 10
3. 實驗 ....................................................................................................................... 11
vi
3.1實驗藥品及設備 ................................................................................................ 11
3.1.1實驗藥品 ...................................................................................................... 11
3.1.2實驗設備 ...................................................................................................... 11
3.2實驗步驟 ............................................................................................................ 13
3.2.1 聚苯乙烯微球之製備 ................................................................................. 13
3.2.2官能性聚苯乙烯微球對金屬離子之吸附測試 ......................................... 16
4. 結果與討論 ........................................................................................................... 21
4.1微波輔助合成高分子微球 ................................................................................ 21
4.1.1 單起始劑合成PS微球 .............................................................................. 21
4.1.2 雙起始劑合成微球 ..................................................................................... 37
4.2官能性高分子微球吸附金屬離子 .................................................................... 45
4.2.1含不同官能基PS微球對鈀離子吸附之特性 ........................................... 45
4.2.2不同鈀離子濃度對微球吸附量之影響 ..................................................... 52
4.2.3吸附時間對微球吸附鈀離子之影響 ......................................................... 57
4.2.4不同脫附液對微球脫附鈀離子之比較 ..................................................... 68
4.2.5官能性微球對金屬離子吸附之選擇性測試 ............................................. 71
5. 結論 ....................................................................................................................... 73
參考文獻 ..................................................................................................................... 74
自傳 ............................................................................................................................. 78
[1]馬光輝、蘇志國,高分子微球材料,化學工業出版社,北京,第231-332頁,2005。
[2]Liu, L., Zhang, J., Wu, C., and Zhao, H., “Surface-Active Gold Nanoparticles with Mixed Polymer Brushes as Surfactants in the Preparation of Polystyrene Colloid Particles,” Macromole Rapid Communications, Vol. 29, pp. 45-51, 2008.
[3]Meng, Q., Li, Z., and Li, G., “Effect of Hydrophilic Shells on the Formation of Colloidal Crystals by Monodisperse Core-Shell Polymer Microspheres,” Rapid Communications, Vol. 28, pp. 1613-1618, 2007.
[4]Arima, Y., and Iwata, H., “Effects of Surface Functional Groups on Protein Adsorption and Subsequent Cell Adhesion Using Self-Assembled Monolayers,” Journal of Material Chemistry, Vol. 17, pp. 4079-4087, 2007.
[5]Caruso, F., “Nanoengineering of Particle Surfaces,” Advanced Materials, Vol. 13, pp. 11, 2001.
[6]Wilcox, D. L., Berg, B., Kellerman, D., and Cochran, J. K., “Hollow and Solid Spheres and Microspheres: Science and Technology Associated with Their Fabrication and Application,” Materials Reasearch Society Symposium Proceedings, pp. 372, 1995.
[7]Liz, L. M., Giersig, M., and Mulvaney, P., “Synthesis of Nanosized Gold-Silica Core-Shell Particles,” Langmuir, Vol. 12, pp. 4329, 1996.
[8]Hofman, C. H., “Polymers at the Surface of Oxide Nanoparticles,” New Journal of Chemistry, Vol. 18, pp. 1087, 1994.
[9]Shun, L., Xin, Y., and Wen, H., “Synthesis of Monodisperse Polymer Microspheres with Mercapto Groups and Their Application as a Stabilizer for Gold Metallic Colloid,” Macromolecular Chemistry and Physics, Vol. 206, pp. 1967-1972, 2005.
[10]Kinoshita, T., Nakagawa, T., Kakimi, Y., Kawabe, Y., Iida, J., and Yamamoto, T. A., “Synthesis of Gold/Magnetic Iron Oxide Composite Nanoparticles for Biomedical Applications with Good Dispersibility,” Journal of Applied Physics, Vol. 99, pp. 101, 2006.
[11]Lim, Y. T., Kim, J. K., Shin, Y. B., and Chung, B. H., “Wavelength and Intensity Multiplexing of Metal Nanoparticles for the Fabrication of Multicolored Micro- and Nanospheres,” Advanced Functional Materials, Vol. 16, pp. 1015-1021, 2006.
[12]Birinci, E., Gülfen, M., and Aydin, A. O., “Separation and recovery of palladium(II) from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin,” Hydrometallurgy, Vol. 95, pp. 15-21, 2009.
[13]Hulanicki, A., “Ion Exchange Preconcentration and Separation of Trace Amounts of Platinum and Palladium,” Analytical Letters, Vol. 33, pp. 2805-2820, 2000.
[14]Sadyrbaeva, T. Z., “Separation of Copper(II) from Palladium(II) and Platinum(IV) by Di(2-ethylhexyl)phosphoric Acid-based Liquid Membranes During Electro-dialysis,” Journal of Membrane Biology, Vol. 275, pp. 195-201, 2006.
[15]Nguyen, H. T., Masayuki, W., and Takaumi, K., “Solvent Extraction of Palladium(II) with Various Ketones from Nitric Acid Medium,” Solvent Extraction and Ion Exchange, Vol. 25, pp. 407-416, 2007.
[16]Zhou, L., Liu, J., and Liu, Z., “Adsorption of Platinum(IV) and Palladium(II) from Aqueous Solution by Thiourea-modified Chitosan Microspheres,” Journal of Hazardous Materials, Vol. 172, pp. 439-446, 2009.
[17]Ramesh, A., Hasegawa, H., Sugimoto, W., Maki, T., and Ueda, K., “Adsorption of Gold(III), Platinum(IV) and Palladium(II) onto Glycine Modified Crosslinked Chitosan Resin,” Bioresource Technology, Vol. 99, pp. 3801, 2008.
[18]Garcia, L., Torrent, A., Antico, E., Fontas, C., and Roglans, A., “Selective Pd(II) and Pt(IV) Sorption using Novel Polymers Containing Azamacrocycle Functional Groups,” Reactive and Functional Polymers, Vol. 68, pp. 1088-1096, 2008.
[19]李和聰,“製備二氧化矽中孔洞材料及其對於銅及鎘離子吸附之研究”,碩士論文,國立成功大學化學系研究所,台南,第20頁, 2008。
[20]劉祐杰,“單一散度高分子螯合顆粒之製備”,碩士論文,私立中原大學化學工程研究所,桃園,第3頁, 2003。
[21]Bao, J., and Zhang, A., “Poly(methyl methacrylate) Nanoparticles Prepared through Microwave Emulsion Polymerization,” Journal of Applied Polymer Science, Vol. 93, pp. 2815-2820, 2004.
[22]Xu, Z. S., Deng, Z. W., Hu, X. X., Li, L., and Yi, C. F., “Monodisperse Polystyrene Microspheres Prepared by Dispersion Polymerization with Microwave Irradiation,” Journal of Polymer Science, Vol. 43, pp. 2368-2376, 2005.
[23]蕭思菁,“雙官能基高分子複合微球之製備”,博士論文,國防大學理工學院國防科學研究所,桃園,第8-12頁, 2010。
[24]Goodwin, J. W., Hearn, J., Ho, C. C., and Ottewill, R. H., “The Preparation and Characterisation of Polymer Latices Formed in the Absence of Surface Active Agents,” British Polymer Journal, Vol. 5, pp. 347, 1973.
[25]Goodall, A. R., Wilkinson, M. C., and Hearn, J., “Mechanism of Emulsion Polymerization of Styrene in Soap-Free System,” Journal of Polymer Science - Polymer Chemistry Edition, Vol. 15, pp. 2193, 1977.
[26]Cox, R. A., Wilkinson, M. C., Goodall, A. R., and Creasey, J. M., “Study of the Anomalous Particles Formed During the Surfactant-Free Emulsion Polymerization of Styrene,” Journal of Polymer Science - Polymer Chemistry Edition, Vol. 15, pp. 2311, 1977.
[27]Chen, C. Y. and Piirma, I., “Emulsion Polymerization of Acenaphthylene. I. A Study of Particle Nucleation in Water Phase and in Aqueous Emulsions,” Journal of Polymer Science - Polymer Chemistry Edition, Vol. 18, pp. 1979, 1980.
[28]Vanderhoff, J. W., “Mechanism of Emulsion Polymerization,” Journal of Polymer Science - Polymer Symposia, Vol. 72, pp. 161, 1985.
[29]Fithch, R. M., “The Homogeneous Nucleation of Polymer Colloids,” British Polymer Journal, Vol. 5, pp. 467, 1973.
[30]Fitch, R. M. and Shih, L. B., “Emulsion Polymerization: Kinetics of Radical Capture by the Particles,” Progress in Colloid and Polymer Science, Vol. 56, pp. 1, 1975.
[31]陳彥仲,“可應用於光電元件的功能性複合微球之製備”,博士論文,國防大學理工學院國防科學研究所,桃園,第33-35頁, 2011。
[32]林瑞明,“氮化鋁陶瓷材料之微波燒結與傳統燒結研究”,碩士論文,國立成功大學化學工程研究所,台南,第12-16頁, 2003。
[33]Liang, W. and Harris, A. T., “Facile Size and Shape Control of Templated Au Nano Particles Under Microwave Irradiation,” Materials Letters, Vol. 65, pp. 2307-2310, 2011.
[34]Sosnik, A., Gotelli, G., and Abraham, G. A., “Microwave-assisted Polymer Synthesis (MAPS) as a Tool in Biomaterials Science: How New and How Powerful,” Progress in Polymer Science, Vol. 36, pp. 1051-1053, 2011.
[35]廖士瑋,“以花生殼灰吸附水溶液中鉛離子的研究”,碩士論文,國立台灣科技大學化學工程研究所,台北,第6-11頁, 2009。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊