跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 22:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭韻璇
研究生(外文):Peng, Yun-Hsuan
論文名稱:鈷鈰觸媒及其支撐性鉑銥觸媒應用於乙醇蒸氣重組反應之研究
論文名稱(外文):Catalytic Performance of CeO2-Co3O4 Supported Pt and Ir Catalysts on the Reforming of Ethanol
指導教授:汪成斌汪成斌引用關係
指導教授(外文):Chen-Bin Wang
口試委員:汪成斌黃其清葉君棣黃鈺軫許峰彰
口試委員(外文):Chen-Bin WangChyi-Ching HwangChuin-Tih YehHUANG,YU-JENHU,FENG-JANG
口試日期:2012-06-20
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:觸媒乙醇蒸氣重組
外文關鍵詞:catalystSteam Reforming of Ethanol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分為三部分,第一部分:利用沉澱氧化法製備一系列Co3O4-CeO2觸媒,其莫耳比分別為1:1、1:2和2:1 (標示為Co1Ce1、Co1Ce2 和Co2Ce1),應用在乙醇蒸氣重組反應。操作條件為H2O/EtOH = 13、空間流速為22,000 h-1。顯示經400 oC還原前處理的觸媒中,以Co1Ce1觸媒具有較好的活性,乙醇完全轉化溫度為350 oC;氫產率達5.5,CO及CH4 選擇率則小於4%。於350 oC穩定測試可維持50小時以上。
第二部分:由第一部分篩選出穩定性好的Co1Ce1觸媒,進一步利用初期潤濕含浸法將Pt及Ir分別負載於Co1Ce1支撐物。結果經SRE反應活性評估,顯示Pt/Co1Ce1觸媒具有較好的活性,於275 oC乙醇可完全轉化,Ir/Co1Ce1觸媒則有較佳的氫產率,於375 oC之氫產率達4.72。
第三部分:以初期潤濕含浸法將Pt、Ir雙金屬負載於Co1Ce1支撐物上,並降低Pt金屬含量,期望應用於SRE反應時可降低甲烷產物,以提高氫氣產率。結果顯示降低Pt金屬含量有助於降低CH4生成,但亦會影響乙醇重組的活性。二觸媒在375 oC下均可維持20小時以上活性而未失活。同時,以XRD和TEM鑑定反應前、後觸媒的組成及顆粒大小;以TPR和EA了解觸媒的還原情形及積碳含量。

This study is mainly divided into three major topics, Part one:The Co3O4 -CeO2 composite oxides are prepared by co-precipitation method with different Co/Ce molar ratio of 1, 0.5 and 2, respectively (assigned as Co1Ce1, Co2Ce1 and Co1Ce2). The catalytic activities toward the steam reforming of ethanol (SRE) were tested in a fixed-bed reactor in the temperature range of 200 - 500 oC. Reaction condition is under 22,000 h-1 GHSV and the H2O/EtOH molar ratio of 13. The results indicated that the Co1Ce1 catalyst has high activity. The ethanol can be converted completely at 350 oC, hydrogen yield (YH2) approached 5.5 at 400 oC and accompanied with less amounts of CO and CH4 (> 4%) byproducts. The time-on-stream under 350 oC exceed 50 h.
Part two: We chose the Co1Ce1 catalyst as the support to prepare the Co1Ce1-supported Pt、Ir catalysts by incipient wetness impregnation method. The catalytic activities toward the SRE were test. The results indicated that ethanol conversion approached completion around 275 oC for Pt/Co1Ce1 catalyst, while, the amount of methane was higher. The hydrogen yield (YH2) can approach 4.72 at low temperature (375 oC) for Ir/Co1Ce1 catalyst.
Part three:The PtxIr/Co1Ce1 catalyst (x = 0.25% and 0.1%) was prepared by incipient wetness impregnation method and to modify the content of Pt, expect to decrease CH4 product and increase hydrogen yield. The results indicated that less amount of Pt can depress the CH4 byproduct, The two catalysts maintain 20 h in the time-on-stream test under 375 oC. Characterization of fresh and used catalysts were studied further with XRD, TEM, TPR and EA. In order to understand the composition, particle size, reduction behavior and amount of deposited carbon.

目錄

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
1. 緒論 1
1.1 前言 1
1.2 製氫技術 1
1.3 乙醇製氫 3
1.4 乙醇蒸氣重組產氫文獻回顧 4
1.5 研究動機與方向 8
2. 實驗 10
2.1 實驗藥品 10
2.2 觸媒之製備 10
2.3 觸媒之特性鑑定 15
2.3.1 熱分析(TGA) 15
2.3.2 X光粉末繞射儀(XRD) 15
2.3.3 感應耦合電漿原子放射光譜儀(ICP-AES) 15
2.3.4 氮氣等溫吸附-脫附測試(BET表面積法) 16
2.3.5 穿透式電子顯微鏡(TEM) 17
2.3.6 元素分析儀(Elemental analyzer , EA) 17
2.3.7 程溫還原(TPR)裝置 18
2.3.8 程溫還原質譜儀(TPR-MS) 18
2.4 乙醇蒸氣重組活性測試 21
2.4.1 活性測試裝置 21
2.4.2 活性測試數據分析 21
3. 結果與討論 25
3.1 CoxCey觸媒特性鑑定及SRE活性評估 25
3.1.1 CoxCey觸媒特性鑑定 25
3.1.2 CexCoy觸媒SRE反應之活性評估 30
3.1.3 CoxCey觸媒經SRE反應後之特性鑑定 36
3.1.4 CoxCey觸媒穩定性測試及特性鑑定 42
3.2 Pt/Co1Ce1及Ir/Co1Ce1觸媒特性鑑定及SRE活性評估 49
3.2.1 Pt/Co1Ce1及Ir/Co1Ce1觸媒特性鑑定 49
3.2.2 Pt/Co1Ce1及Ir/Co1Ce1媒觸媒SRE活性評估 52
3.2.3 Pt/Co1Ce1及Ir/Co1Ce1觸媒經SRE反應後之特性鑑定 55
3.3 PtxIr/Co1Ce1觸媒之特性鑑定及SRE活性評估 59
3.3.1 PtxIr/Co1Ce1觸媒之特性鑑定 59
3.3.2 PtxIr/Co1Ce1觸媒之SRE活性測試 61
3.3.3 PtxIr/Co1Ce1觸媒經SRE反應後之特性鑑定 66
3.3.4 觸媒穩定性測試 70
3.3.5 SRE反應機制探討 74
4.結論 77
參考文獻 78


1Das, D., and Veziroglu, T. N., “Hydrogen production by biological processes:A survey of literature,” International Journal of Hydrogen Energy, Vol. 26, pp. 13-28, 2001.
2毛宗強,氫能 21世紀的綠色能源,新文京開發出版股份有限公司,台北,第133頁,2008。
3http://www.energyservice.com.tw/? ,台灣節能技術服務有限公司(2012.03.01)
4Marcelo, S., Batista, Rudye, K.S.S., Elisabete, M.A., José, M.A., and Edson, A.T., “Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol,” Journal of Power Sources, Vol. 124, pp. 99-103, 2003.
5Sun, J., Qiu, X., Wu, F., Zhu, W., Wang, W., and Hao, S., “Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application,” International Journal of Hydrogen Energy, Vol. 29, pp. 1075-1081, 2004.
6Benito, M., Sanz, J.L., Isabel, R., Padilla, R., Arjona, R., and Daza, L.,“Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production,” Journal of Power Sources, Vol. 151, pp. 11-17, 2005.
7Zhang, B., Tang, X., Li, Y., Cai, W., Xu, Y., and Shen, W.,“Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts,” Catalysis Communications , Vol. 7, pp. 367-372, 2006.
8Vizcaino, A.J., Carrero, A., and Calles, J.A., “Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts,” International Journal of Hydrogen Energy, Vol. 32, pp. 1045-1461, 2007.
9Luciene, P.R., Edson, A.T., and Elisabete, M.A., “Production of hydrogen by ethanol steam reforming on Co/Al2O3 catalysts: Effect of addition of small quantities of noble metals,” Journal of Power Sources,Vol. 175, pp. 482-489, 2008.
10Wang, H., Ye, J.L., Liu, Y., Li, Y.D., and Qin, Y.N., “Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods,” Catalysis Today, Vol. 129, pp. 305-312, 2007.
11Wang, H., Liu, Y., Wang, L., and Qin, Y.N., “Study on the carbon deposition in steam reforming of ethanol over Co/CeO2 catalyst,” Chemical Engineering Journal , Vol. 145, pp. 25-31, 2008.
12Vı´ctor, A.P.O., Homs, N., Pereira, E.B., Nafria, R., and Piscina, P.R., “X-ray diffraction study of Co3O4 activation under ethanol steam-reforming,” Catalysis Today, Vol. 126, pp. 148–152, 2007.
13Silva, A.L.M., Mattos, L.V., Breejen, J.P., and Bitter, J.H., “Oxidative steam reforming of ethanol over carbon nanofiber supported Co catalysts,” Catalysis Today, Vol. 164, pp. 262-267, 2011.
14Wang, C.B., Lee, C.C., Bi, J.L., Siang, J.Y., Liu, J.Y., and Yeh, C.T., “Study on the steam reforming of ethanol over cobalt oxides” Catalysis Today, Vol. 146, pp. 76-81, 2009.
15Song, H., and Ozkan, U.S., “The role of impregnation medium on the activity of ceria-supported cobalt catalysts for ethanol steam reforming,” Journal of Molecular Catalysis A: Chemical, Vol. 318, pp. 21-29, 2010.
16Mirkelamoglu,B., Song, H., and Ozkan, U.S., “Effect of cobalt precursor on the performance of ceria-supported,” Applied Catalysis A: General, Vol. 382, pp. 58-64, 2010.
17Bayram, B., Soykal, I.I., Deak, D.V., Miller, J.T., and Ozkan, U.S., “Ethanol steam reforming over Co-based catalysts: Investigation of cobalt coordination environment under reaction conditions,” Journal of Catalysis, Vol. 284, pp. 77-89, 2011.
18Karim, A.M., Engelhard, M.H., Su, Y., King, D.L., and Wang, Y., “Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on Co/MgO catalysts,” American Chemical Society, Vol. 1, pp. 279-286, 2011.
19Lima, S.M., Silva, A.M., Costa, L.O.O., Graham, U.M. , Jacobs, G., Davis, B.H., Mattos, L.V., and Noronha, F.B., “Study of catalyst deactivation and reaction mechanism of steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Co/CeO2 catalyst,” Journal of Catalysis, Vol. 268, pp. 268-281, 2009.
20Banach,B., Machocki, A., Denis, A., Rybak, P., Grzegorczyk, and G., Gac, W.,“Selective production of hydrogen by steam reforming of bio-ethanol,” Catalysis Today, Vol. 176, pp. 28-35, 2011.
21Wang, C.B., Lee, C.C., Deng, C.Y., Siang, J.Y., Wang, C.H., Wang, W.Z., and Yeh, C.T., “Hydrogen production from steam reforming of ethanol using a ceria-supported iridium catalyst: Effect of different ceria supports,” International Journal of Hydrogen Energy, Vol. 35, pp. 3456-3462, 2010.
22Wang, C.B., Yeh, C.T.,Chiou, Y.Z., Siang, J.Y., Yang, S.Y., Ho, K.F., and Lee, C.L., “Pathways of ethanol steam reforming over ceria-supported catalysts,” International Journal of Hydrogen Energy, doi:10.1016/j.ijhydene.2012.02.081.
23Ruggiero, A., Palma, V., and Ciambelli, P., “Low temperature catalytic steam reforming of ethanol. 2. Preliminary kinetic investigation of Pt/CeO2 catalysts,” Applied Catalysis B: Environmental, Vol. 96, pp. 190-197, 2010.
24Patterson, P.M., Jacobs, G., Graham, U.M., Sparks, D.E., and Davis, B.H., “Low temperature water-gas shift: Kinetic isotope effect observed for decomposition of surface formates for Pt/ceria catalysts,” Applied Catalysis A: General , Vol. 269, pp. 63-73, 2010.
25Cai, W., Wang, F., Daniel, C., Schuurman., Y., Descorme, C., Provendier, H., Shen, W., and Mirodatos, C., “Oxidative steam reforming of ethanol over Ir/CeO2 catalysts: A structure sensitivity analysis,” Journal of Catalysis, Vol. 286, pp. 137-152, 2012.
26Jung, K.T., and Bell, A.T., “H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2 and Pt/CeZrO2 catalysts,” Catalysis Today, Vol. 138, pp. 162-168, 2008.
27Song, H., and Ozkan, U.S., “Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility,” Journal of Catalysis, Vol. 261, pp. 66-74, 2009.
28Karim, A. M., Su, Y., Sun, J., Yang, C., Strohm, J.J., King, D. L., and Wang, Y., “A comparative study between Co and Rh for steam reforming of ethanol,” Applied Catalysis B: Environmental, Vol. 96, pp. 441-448, 2010.
29Vohs, J. M., and Hyman, M. P., “Reaction of ethanol on oxidized and metallic cobalt surfaces,” Surface Science, Vol.605 , pp.383-389, 2011.
30Wang, C. B., Tang, C. W., and Chien, S. H., “Abatement of Carbon Monoxide over CeO2-CoOx Catalysts:Effect of Preparation Method,” Catalysis Letters, Vol. 131, pp. 76-83, 2009.
31Nishiguchi, T., Matsumoto, T., Kanai, H., Utani, K., Matsumura, Y., Shen, W. J., and Imamura, S., “Catalytic steam reforming of ethanol to produce hydrogen and acetone,” Applied Catalysis A: General, Vol. 279, pp. 233-277, 2005.
32Casanovas, A., Saint-Gerons, M., Griffon, F., and Llorca, J., “Autothermal generation of hydrogen from ethanol in a microreactor,” International Journal of Hydrogen Energy, Vol. 33, pp. 1827-1833, 2008.
33Idriss, H., Diagne, C., Hindermann,J.P., Kiennemann, A., and Barteau, A., “Reactions of acetaldehyde on CeO2 and CeO2-supported catalysts,” Journal of Catalysis, Vol. 155, pp. 219-237, 1995.
34Cai, W., Zhang, B., Li,Y., Xu, Y., and Shen, W., “Hydrogen production by oxidative steam reforming of ethanol over an Ir/CeO2 catalyts,” Catal. Commun., Vol. 8, pp.1588-1595, 2007.
35Cai,W., Zhang, B., Li,Y., Xu, Y., and Shen, W., “Hydrogen production by steam reforming of ethanol over an Ir/CeO2 catalyst: Reaction mechanism and stability of the catalyst,” International Journal of Hydrogen Energy, Vol. 33, pp. 4377-4386, 2008.
36Wang, F., Cai, W., Provendier, H., Schuurman, H., Descorme, C., Mirodatos, C., and Shen, W., “Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: Enhanced stability by PrOx promotion,” International Journal of Hydrogen Energy, Vol. 36, pp. 13566-13574, 2011.
37劉筱玟,“CoOx/Ca-SBA-15觸媒應用於乙醇蒸氣重組反應之研究”,碩士論文 ,國防大學中正理工學院國防科學研究所,桃園,2011。
38向嘉頤,“氧化鈰支撐性觸媒應用於乙醇蒸氣重組反應之研究”,碩士論文 ,國防大學中正理工學院國防科學研究所,桃園,2008。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top