跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林孟毅
研究生(外文):Lin, Meng-Yi
論文名稱:含磷水性聚胺酯複合材料作為阻燃塗料之研究
論文名稱(外文):Phosphorus as a flame retardant polyurethane coating of composite material
指導教授:張章平
指導教授(外文):Cheng, Cheng-Ping
口試委員:張章平洪耀勳何子萬陳冠男
口試委員(外文):Cheng, Cheng-PingHong, Yao-XunHe, Zi-WanChen, Guan-Nan
口試日期:2012-05-16
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:81
中文關鍵詞:磷系聚胺酯阻燃塗料
外文關鍵詞:Phosphoruspolyurethaneflame retardantcoatings
相關次數:
  • 被引用被引用:3
  • 點閱點閱:482
  • 評分評分:
  • 下載下載:163
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用合成含磷的水性聚胺酯(polyurethane, PU)作為阻燃性塗料。以往阻燃塗料多使用鹵素為阻燃因子,但也造成許多毒素及汙染。藉由改良過之磷系化合物反應聚胺酯樹脂的阻燃性塗料,不僅避免產生毒素,並有效的抑制材料的起燃點,提高基材的閃燃點,確實的延後起火發生的時機。因此含磷水性聚胺酯做為阻燃性塗料的特點,研究出各種比例下阻燃性塗料的耐火程度,並且已符合國家標準的要求。從傅立葉轉換紅外線光譜儀(FT-IR)、核磁共振光譜儀(NMR)可分析鑑定結構及特性。再由使用熱重分析儀(TGA)以及示差掃描熱卡計(DSC)判斷其燃燒過程與裂解現象。再利用LOI值、國家標準CNS-7614規範與UL-94V耐燃規範來測定耐燃程度以及阻燃效果,從結果表示,混摻無機材料的有機無機複合型塗料可以有效達到LOI值不燃等級。在UL-94垂直燃燒測試結果顯示,在7%含磷水性PU即可達到V-0級,也符合國家標準CNS-7614的防焰一級。更在混摻無機材料之後更有效的達到各項阻燃標準以及表護基材不受損。最後利用高溫老化試驗以及鹽霧試驗測試其產品的存儲效果與抗腐蝕性質。後續再利用含磷聚胺酯混摻碳黑與沸石進行更高的阻燃測試,結果顯示其複合材料阻燃特性不僅有加成作用,更能夠在軍事裝備上有更大的發揮。更能使本研究產品可利用於軍事單位以及民生用品上的各種塗料應用。
In this study, water-based polyurethane (polyurethane) synthesized phosphorus as a flame retardant coating. The past, fire-retardant coating multi-halogen flame retardant factor, but also caused a lot of toxins and pollution. By the improved phosphorus compounds reactive polyurethane resin, flame-retardant coating, not only to avoid toxins, and effective suppression of material from the ignition, and to improve the flash point of the substrate, the delayed timing of fire occurred. Phosphorus water-based polyurethane as the characteristics of flame-retardant coating, developed in various proportions, the degree of fire resistance of fire retardant paint, and have complied with the requirements of national standards. Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR) analysis of identification of polymer structure and properties. By using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) to determine the combustion process and cracking phenomena. LOI value of national standards CNS-7614 specifications and UL-94V flame specification to determine the extent of the polymer of the flame and flame-retardant effect. Finally, the storage effect and anti-corrosion properties of high temperature aging test and salt spray test to test their products. Follow-up the use of phosphorus-containing polyurethane and then blended with carbon black and Zeolite higher flame test results show that its flame retardant properties of composite materials not only had an additive effect, but to play a greater military equipment. It enables the product of this study can be used in military units, as well as consumer goods on a variety of coatings applications.
內容
誌謝 i
摘要 ii
Abstract iii
1. 緒論 1
1.1. 研究動機 1
1.2. 研究目的 2
1.3. 文獻回顧 3
1.3.1. 聚胺酯簡介 3
1.3.2. 燃燒原理 4
1.3.3. 阻燃劑簡介 5
1.3.4. 阻燃特性及原理 8
1.3.5. 阻燃劑分類 9
1.3.6. 有機磷系具有反應官能基單體之合成方法 10
1.3.7. 阻燃塗料組成及分類 12
2. 實驗 14
2.1. 實驗器材與儀器設備 14
2.2. 實驗藥品 14
2.3. 有機磷單體的製備 15
2.4. 水性聚胺酯的製備 16
2.5. 含磷聚胺酯的製備 18
2.6. 含磷聚胺酯複合材料的製備 20
2.7. 含磷聚胺酯阻燃塗料之製備 21
2.8. 儀器測試 23
2.8.1. 傅立葉轉換式紅外線光譜儀(FT-IR) 23
2.8.2. 核磁共振光譜儀(NMR) 23
2.8.3. 熱重分析儀(TGA) 23
2.8.4. 示差掃描熱量分析儀(DSC) 23
2.8.5. 限氧指數測試儀(LOI) 24
2.8.6. 45°梅克爾燃燒測試設備 25
2.8.7. UL-94V垂直燃燒測試設備 26
2.8.8. 老化試驗 28
2.8.9. 鹽霧試驗 28
3. 結果與討論 30
3.1. 有機磷單體之光譜分析鑑定 30
3.1.1. 有機磷單體之FT-IR光譜分析鑑定 30
3.1.2. 有機磷單體之1H-NMR分析鑑定 31
3.1.3. 有機磷單體之13C -NMR分析鑑定 32
3.1.4. 有機磷單體之31P -NMR分析鑑定 33
3.2. 水性聚胺酯之光譜分析鑑定 34
3.2.1. 水性聚胺酯之FT-IR光譜分析鑑定 34
3.3. 含磷水性聚胺酯之光譜分析鑑定 35
3.3.1. 含磷聚胺酯之FT-IR光譜分析鑑定 35
3.3.2. 含磷聚胺酯之31P-NMR光譜分析鑑定 41
3.4. 含磷聚胺酯之反應程度之分析鑑定 42
3.5. 含磷聚胺酯及其複合材料之熱分析測定 45
3.5.1. 含磷聚胺酯及其複合材料之之TGA熱重分析圖 45
3.6. 含磷聚胺酯及其複合材料之阻燃測試 47
3.6.1. 含磷聚胺酯及其複合材料之限氧指數(LOI)測試 47
3.6.2. 含磷聚胺酯及其複合材料之CNS-7614規範阻燃測試 49
3.6.3. 含磷聚胺酯及其複合材料之UL-94規範阻燃測試 53
3.7. 含磷聚胺酯之儲存穩定性測試分析 56
3.7.1. 含磷聚胺酯之耐候性測試結果 56
3.7.2. 含磷聚胺酯及其複合材料之耐腐蝕(酸霧試驗)測試 57
4. 結論 60
5. 參考文獻 62
自傳 66

[1] Storhoff, J. J., Elghanian, R. R., Mucic, C., Mirkin, C. A. and Letsinger, R. L., “One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes,” Journal of the American Chemical Society, Vol. 120, No. 9, pp. 1959–1964, 1998.
[2] Hu, Z., Xia, X., Marquez, M., Weng, H. and Tang, L., “Controlled Release from and Tissue Response to Physically Bonded Hydrogel Nanoparticle Assembly,” Journal of the American Chemical Society , Vol. 227, Issue 1, pp. 275–284, 2005
[3] Prabhuram, J., Wang, X., Hui, C. L. and Hsing, I. M., “Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications,” Journal of Physical Chemistry B., Vol. 107, pp. 1057-11064, 2003.
[4] Wiley, J., Kirk-Othmer Encyclopedia of Chemical Technology, American, Vol. 10, 4th ed., pp. 976–998, 1993.
[5] Randoux Th., Vanovervelt J.-Cl., Van den Bergen H. and Camino G., “Halogen-free flameretardant radiation curable coatings,” Progress in Organic Coatings, Vol. 45, pp. 281–289, 2001.
[6] Levchik, S. V. and Weil, E. D., “A review of recent progress in phosphorus based flame retardants,” Journal of Fire Science, Vol. 24, No. 5, pp. 345–364, 2006.
[7] Hoang, D. Q., Kim, J. W. and Jang, B. N., “Synthesis and performance of cyclic phosphorus-containing flame retardants,” Polymer Degradation and Stability, Vol. 93, pp. 2042–2047, 2008.
[8] Horacek, H. and Grabner, R., “Advantages of flame retardants based on nitrogen compounds,” Polymer Degradation and Stability, Vol. 54, Issues 2-3, pp. 205–215, 1996.
[9] Lu, Y. H., Wang, L. J., Liu, Z. M. and Hao, X., “Application and Research Advance of Nanometer Materials in Functional Textiles,” Journal of Liaodong University(Natural Science), Vol. 15, pp. 61-65,2008.
[10] 陳平,廖明義,高分子合成材料學(上),化學工業出版社,北京市,第1-6頁,2005。
[11] Jiang, J., Li, J., Hu, J. and Fan, D., “Effect of nitrogen phosphorus flame retardants on thermal degradation of wood,” Construction and Building Materials, Vol. 24, pp. 2633-2637, 2010.
[12] Tao, K., Li, J., Xu, L., Zhao, X., Xue, L., Fan, X. and Yan, Q.,“A novel phosphazene cyclomatrix network polymer: Design, synthesis and application in flame retardant polylactide,” Polymer Degradation and Stability, Vol. 96, pp. 1248-1254, 2011.
[13] Tanaka, H., Suzuki, Y. and Yoshino, F., “Sythesis and coating application of waterborne fluoroacrylic-polyurethane composite dispersions,” Physiochemical and Engineering Aspects, Vol. 153, pp. 597-601, 1999.
[14] Wei, L. L., Wang, D. Y., Chen, H. B., Chen, L., Wang, X. L. and Wang, Y. Z., “Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(lactic acid),” Polymer Degradation and Stability, Vol. 96, pp. 1557-1561, 2011.
[15] Bourbigot, S., Samyn, F., Turf, T. and Duquesne, S., “Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants,” Polymer and Degradation and Stability, Vol. 95, pp. 320-326, 2010.
[16] Rosu, D., Tudorachim, N. and Rosu, L., “Investigations on the thermal stability of a MDI based polyurethane elastomer,” Journal of Analytical and Applied Pyrolysis, Vol. 13, pp. 152-162, 2010.
[17] Zhang, Y., Xia, Z., Huang, H. and Chen, H., “A degradation study of waterborne polyurethane based on TDI,” Polymer Testing, Vol. 28, pp. 264-269, 2009.
[18] Xie, J. L., Han, M., Chen, L., Kuang, R. and Deng, L., “Microwave-absorbing properties of NiCoZn spinel ferrite,” Journal of Magnetism and Magnetic Materials, Vol. 314, pp. 37-42, 2007.
[19] HÖrold, S., “Phosphorus flame retardants in thermoset resins”, Polymer Degradation and Stability, Vol. 64, pp. 427-431, 1999.
[20] Tüken, T., Yazici, B. and Erbil, M., “The corrosion behavior of polypyrrole coating synthesized in phenylphosphonic acid solution,” Applied Surface Science, Vol. 252, pp. 2311-2318, 2006.
[21] Osborne, J. H., Blohowiak, K. Y., Taylor, S. R., Hunter, C., Bierwagon, G., Carlson, B., Bernard, D. and Donley, M. S., “Testing and evaluation of nonchromated coating systems for aerospace applications,” Progress in Organic Coating, Vol. 41, pp. 217-225, 2001.
[22] Chung, Y. J., Kim, Y. and Kim, S., “Flame retardant properties of polyurethane produced by the addition of phosphorous containing polyurethane oligomers(II),” Journal of Industrial and Engineering Chemistry, Vol. 15, pp. 888-893, 2009.
[23] 陳雅惠, “含磷烴與矽難燃環氧樹脂之製備與其性質研究” , 碩士論文, 私立中原大學, 桃園, 第1-3頁, 2001。
[24] 劉進昌, “無鹵素耐燃劑加入無毒高分子燃燒特性之研究”, 碩士論文, 國立中正大學, 嘉義, 第16頁, 2004。
[25] 謝正悅、林慶炫、王春山, “非鹵素難燃電子材料-含磷環氧樹脂”, 科學發展月刊,第28卷,第11期,第843-844頁,2000。
[26] 雷自强、王傳、張哲、宋小麗、李天輝,“阻燃聚苯乙烯研究進展”,塑料科技期刊,第37卷,第4期(總第204期),2009。
[27] 陳雅惠、陳玉慧,“含磷腈與矽難燃環氧樹脂之製備及其性質研究”,碩士論文,中原大學,桃園,第42-45頁,2001。
[28] 許耀升、陳明,“聚酯阻燃層之開發”,碩士論文,國立中山大學,高雄,第12-17頁,2003。
[29] 陳英杰,“含磷高分子合成及物性研究”,碩士論文,國防大學理工學院,桃園,第1-3頁,2007。
[30] 鍾松政, “防火塗料的現況與發展趨勢”,化工資訊與商情,第59期,第17-23頁,2008。
[31] 徐曉楠、周政懋,“防火塗料”,化學工業出版社,台北,第3-9頁,2005。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top