跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/27 23:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳雅萍
研究生(外文):Chen, YaPing
論文名稱:Co/Ce-Prx複合氧化物應用於乙醇蒸氣重組
論文名稱(外文):Steam Reforming of Ethanol over Co/Ce-Prx Catalysts
指導教授:汪成斌汪成斌引用關係
指導教授(外文):Wang, ChenBin
口試委員:汪成斌葉君棣許峰彰黃其清黃鈺軫
口試委員(外文):Wang, ChenBinYeh, ChuinTihHSU,FENGCHANGHUANG,CHICHINGHUANG,YUCHEN
口試日期:2012-06-20
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:104
中文關鍵詞:乙醇蒸氣重組
外文關鍵詞:steam reforming of ethanol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要是以氧化鈷做為活性金屬,探討摻入單與雙稀土元素對於鈷金屬所產生的影響。首先先利用沉澱氧化方法製備氧化鈷觸媒,進一步利用鈰修飾鈷觸媒,其研究方式為探討不同還原溫度(H250、H500)與煅燒溫度(C300、C500)下的乙醇蒸氣重組(SRE)之研究。活性評估條件:100mg觸媒,水/醇(H2O/EtOH)莫耳比為13,空間流速(Gas hour space velocity,GHSV)為22000h-1,反應溫度於250~500oC間進行活性測試。
本次實驗證實鈷金屬比氧化鈷(Co3O4)有較高的SRE活性,且於煅燒溫度高時,才可以將硝酸根(NO3-)完全移除,因此,觸媒於C500與H400才有較高的活性。而Co3O4進行SRE反應溫度至高溫時,會因為燒結與積碳而失活,使得反應時間無法長久,且可判定單稀土元素修飾無法完全抑制鈷金屬的燒結。
接著使用雙稀土元素修飾鈷金屬觸媒並利用不同方法製備進行研究,可得Co/Ce-Pr10-IWI(初濕含浸法)與Co/Ce-Pr10-CPO(共沉澱氧化法)觸媒。透過SRE活性測試,Co/Ce-Pr10-CPO有較高的氫選擇性、乙醇轉化率也降低至300oC,並且有較長的反應時間。
因此,透過本次實驗可判定雙稀土元素修飾之活性會較單稀土元素修飾來的佳;而使用CPO(共沉澱氧化法)製程所製備之觸媒可具有較高的氫選擇性、較低的轉化溫度及擁有較長的反應時間。

Doping of Pr (5 and 10% loading) on Ce0.5Co0.5O2 catalyst, used for steam reforming of ethanol (SRE), was prepared by incipient wetness impregnation method. The topic focused on the effect of the reduction pretreatment under 250 and 400 ℃ (assigned as H250 and H400). All samples were characterized by XRD, TPR and TEM. Catalytic performance of SRE was tested from 250 to 500 ℃ in a fixed-bed reactor under H2O/EtOH molar ratio of 13 and 22,000 h-1 GHSV. In the preliminary test, we found that the activity can be enhanced on increasing the Pr loading. Also, the pretreatment of reduction can influence the distribution of products, i.e. the byproduct of acetone is higher than 30 mol% under H250, while, the CO byproducts are lower than 2 mol% under H400. According to the results, we suggested that the 10Pr/Ce0.5Co0.5O2-H400 is a preferential SRE catalyst. The products can be varied with the increasing of reaction temperature (TR), i.e. the acetaldehyde is oxidized to acetone and then, decomposes into CO2 and methyl group. Further, the steam reforming of methyl and water gas shift reaction accompany as the TR exceeds 375 ℃. At 475 ℃, the yield of hydrogen approached 5.38.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
1.緒論 1
1.1前言 1
1.2製氫技術 1
1.3 乙醇製氫 4
1.4乙醇蒸氣重組產氫文獻回顧 6
1.5研究目的 10
2.實驗 12
2.1 實驗藥品 12
2.2 觸媒之製備 13
2.2.1Co3O4觸媒之製備 13
2.2.2Co3O4/CeO2觸媒之製備 13
2.2.3Co3O4/CeO2-Pr觸媒之製備 13
2.3 觸媒之特性鑑定 18
2.3.1 表面積及孔徑量測 18
2.3.2 X光粉末繞射儀(X-ray powder diffration, XRD) 20
2.3.3 程溫還原反應(Temperature programmed reduction, TPR) 20
2.3.4 穿透式電子顯微鏡(Transmission electron microscope, TEM) 22
2.3.5 熱分析(TGA) 22
2.3.6 元素分析儀(EA) 23
2.3.7感應耦合電漿原子放射光譜儀(ICP-AES) 23
2.4 乙醇蒸氣重組活性測試 23
2.4.1 活性測試裝置 23
2.4.2 活性測試數據分析 24
3.結果與討論 29
3.1Co3O4觸媒特性鑑定及SRE活性評估 29
3.1.1Co3O4觸媒之特性鑑定 29
3.1.2氧化鈷之活性評估 30
3.1.3經SRE反應後觸媒之特性鑑定 31
3.2 Co3O4/CeO2-Prx觸媒特性鑑定及SRE活性評估 40
3.2.1Co3O4/CeO2-Pr觸媒特性鑑定 40
3.2.2 Co3O4/CeO2-Prx觸媒之SRE活性評估 41
3.2.3 Co3O4/CeO2-Prx觸媒經SRE反應後之特性鑑定 44
3.3 Co/Ce-Pr10-C5(C)觸媒特性鑑定及SRE活性評估 68
3.3.1 Co/Ce-Pr10-C5(C)觸媒特性鑑定 68
3.3.2 Co/Ce-Pr10-C5(C)之SRE活性評估 68
3.3.3 Co/Ce-Pr10-C5(C)觸媒經SRE反應後之特性鑑定 69
3.3.4製備方法對催化活性之影響 69
3.4稀土元素修飾之影響 69
3.5 觸媒穩定性測試 69
3.6 SRE反應機制探討 83
4.結論 87
參考文獻 87
自傳 93

[1]Davda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D., and Dumesic, J. A., “Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts,” Applied Catalysis B: Environmental, Vol. 43, pp. 13-26, 2003.
[2]Mohammad, A., Keiichi, T., and Kauro, F.,“A novel catalytic process for cellulose gasification to synthesis gas,”Catalysis Communications, Vol. 2, pp. 63-68, 2001.
[3]Vriesman, P., Heginuza, E., and Sjostrom, K., “Biomass gasification in a laboratory-scale AFBG: influence of the location of the feeding point on the fuel-N conversion,” Fuel, Vol. 79, pp. 1371-1378, 2000.
[4]Wiese, W., Emounts, B., and Peters R., “Methanol steam reforming in a fuel cell drive system,” Joural of Power Sources, Vol. 84, pp.187-193, 2007.
[5]Tsai, M. C., Wang, J. H., Shen, C. C., and Yeh, C. T., “Promotion of a copper–zinc catalyst with rare earth for the steam reforming of methanol at low temperatures”, Joural of catalysis,Vol.34, pp.198-202, 2011.
[6]Liguras, D.K., Kondarides, D.I., and Verykios, X.E., “Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts,” Appl Catal B Environ, Vol. 43, pp.345-354, 2003.
[7]Prakash, D. V., and Alirio, E. R., “Insight into steam reforming of ethanol to produce hydrogen for fuel cells”, Chmical Engineering Journal, Vol.117, pp.39-49, 2006.
[8]Llorca, J., Homs, N., Sales, J., and Pilar Ramırez de la, P., “Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming,”Journal of Catalysis, Vol.209, pp.306–317, 2002.
[9]Zhang, B., Tang, X., Li, Y., Cai, W., Xu, Y., and Shen, W., “Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts,”Catalysis Communications, Vol.7, pp.367–372, 2006.
[10]Wanat, E.C., Venkataraman, K., and Schmidt, L.D., “Steam reforming and water–gas shift of ethanol on Rh and Rh–Ce catalysts in a catalytic wall reactor”, Applied Catalysis A: General, Vol. 276, pp.155–162, 2004.
[11]Song, H., Zhang, L., Watson, R. B., Braden, D., and Ozkan U. S., “Investigation of bio-ethanol steam reforming over cobalt-based catalysts,”Catalysis Today, Vol.129, pp.346–354, 2007.
[12]Luciene, P.R., Profeti, E. A.,Ticianelli., and Elisabete, M. A., “Production of hydrogen by ethanol steam reforming on Co/Al2O3catalysts: Effect of addition of small quantities of noble metals,”Journal of Power Sources, Vol.175, pp. 482–489, 2008.
[13]Das, T. K., Jacobs, G., Patterson, P. M., Conner, W. A., Li, J., and Davis, B. H., “Fischer–Tropsch synthesis: characterization and catalytic properties of rhenium promoted cobalt alumina catalysts,” Fuel, Vol.82, pp.805–815, 2003.
[14]Jacobs, G., Das, T. K., Patterson, P. M., Li, J., Sanchez, L., and Davis, B. H., “Fischer–Tropsch synthesis XAFS XAFS studies of the effect of water on a Pt-promoted Co/Al2O3 catalyst,”Applied Catalysis A: General, Vol.247, pp.335–343, 2003.
[15]Adriana, M., da Silva a, Katia Regina de Souzaa, Mattosb, L. V., Jacobsc, G., Davisc, B. H., and Noronhaa, F. B., “The effect of support reducibility on the stability of Co/CeO2 for the oxidative steam reforming of ethanol,”Catalysis Today, Vol.164, pp. 234–239, 2011.
[16]Wang, H., Liua, Y., Wanga, L., and Qina, Y.N., “Study on the carbon deposition in steam reforming of ethanol over Co/CeO2 catalyst,”Chemical Engineering Journal, Vol.145, pp. 25–31, 2008.
[17]Ribeiro R.U., Liberatori J.W.C., Winnishofer H., Bueno J.M.C., and Zanchet, D., “Colloidal Co nanoparticles supported on SiO2: Synthesis, characterization and catalytic properties for steam reforming of ethanol,” Applied Catalysis B: Environmental, Vol.91, pp. 670–678, 2009.
[18]Yee, A., Morrison, S. J., and Idriss, H., “A study of ethanol reactions over Pt/CeO2 by temperature-programmed desorption and in situ FT-IR spectroscopy: Evidence of benzene formation,”Journal of Catalysis, Vol.191, pp.30–45, 2000.
[19]Zhao, S., Luo, T., and Gorte, R.J., “Deactivation of the water–gas-shift activity of Pd/ceria by Mo,”Journal of Catalysis, Vol.221, pp. 413–420, 2004.
[20]Ciambelli, P., Palma, V., and Ruggiero, A., “Low temperature catalytic steam reforming of ethanol. 1. The effect of the support on the activity and stability of Pt catalysts,”Applied Catalysis B: Environmental, vol.96, pp. 18–27, 2010.
[21]Agustı, E. G., Manuel, F. G., Luis, A. A., and Abello, M. C., “Hydrogen production by ethanol reforming over NiZnAl catalysts: Influence of Ce addition on carbon deposition,”Applied Catalysis A: General, vol. 348, pp. 94-102, 2008.
[22]Andreeva, D. , Idakiev, V., Tabakova, T., Ilievaa, L., Falaras, P. , Bourlinos, A., and Travlos, A.“Low-temperature water-gas shift reaction over Au/CeO2 catalysts,”Catalysis Today, vol. 72, pp. 51-57, 2002.
[23]Gary, J., Patricia, M. P., Uschi, M. G., Dennis, E. S., and Burtron, H. D., “Low temperature water-gas shift: kinetic isotope effect observed for decomposition of surface formates for Pt/ceria catalysts,”Applied Catalysis A: General, vol. 269, pp. 63-73, 2004.
[24]李嘉展,“氧化鈷觸媒應用於乙醇蒸氣重組反應之研究”,碩士論文,桃園,國防大學中正理工學院應用化學研究所,2007。
[25]Tsai, M.C., Wang, J.H. , Shen, C.C., and Yeh C.T., “Promotion of a copper–zinc catalyst with rare earth for the steam reforming of methanol at low temperatures,”Journal of Catalysis, vol.279, pp.241-245, 2011.
[26]Zhang, L., Li, W., Liu, J., Guo, C., Wang, Y., and Zhang, J., “Ethanol steam reforming reactions over Al2O3 - SiO2-supported Ni–La catalysts,”Fuel, Vol. 88, pp. 511-518, 2009.
[27]Marcelo, S. B., Rudye, K.S. S., Elisabete M. Assaf, José M. Assaf , Edson, A., and Ticianelli,“High efficiency steam reforming of ethanol by cobalt-based catalysts,”Journal of Power Sources, vol.134, pp. 27–32,2004
[28]Adriana M. da Silva a, Katia Regina de Souzaa, Lisiane V. Mattosb, Gary Jacobsc, Burtron, H. D., and Fabio B. N.,“The effect of support reducibility on the stability of Co/CeO2 for the oxidative steam reforming of ethanol,”Catalysis Today, vol.164 , pp.234–239, 2011.
[29]Padilla, R., M., Benito, L., Rodrı´guez, A., Serrano, G. Mun˜oz a, L. Daza.,“Nickel and cobalt as active phase on supported zirconia catalysts for bio-ethanol reforming: Influence of the reaction mechanism on catalysts performance,”International Journal of Hydrogen Energy, Vol.35, pp.8921-8928, 2010.
[30]Ye, J. L., Wang, Y., and Liu, Y., “NiO-Ce0.5Zr0.5O2 catalysts prepared by citric zcid method for steam reforming of ethanol,”Journal of Rare Earths, Vol.26, pp.831-835, 2008.
[31]Zhang, B., Cai, W., Li, Y., Xu, Y., and Shen, W., “Hydrogen production by steam reforming of ethanol over an Ir/CeO2 catalyst: Reaction mechanism and stability of the catalyst,”International Journal of Hydrogen Energy, vol.33, pp.4377–4386, 2008.
[32]Lin, S.S.Y.,Daimon, H., andHa, S.Y., “Co/CeO2-ZrO2catalysts prepared by impregnation and coprecipitation for ethanol steam reforming,” Applied Catalysis A: General, Vol.366, pp. 252-261, 2009.
[33]OShea, V.A.P., Homs, N., Pereira, E.B., Nafria, R., and Piscina, P.R., “X-ray diffraction study of Co3O4 activation under ethanolsteam-reforming,”Catalysis Today, Vol. 126, pp. 148–152, 2007.
[34]Lin, S.Y., Do, H.K., and Su, Y.H., “Metallic phases of cobalt-based catalysts in ethanol steam reforming:The effect of cerium oxide,” Applied Catalysis A:General, Vol. 355, pp. 69–77, 2009.
[35]Casanovas, A., Maider, S.G., Griffon, F., and Llorca, J., “Autothermal generation of hydrogen from ethanol in a microreactor,”International Journal of Hydrogen
Energy, Vol. 33, pp. 1827 – 1833, 2008.
[36]OShea, P.V.A., Homs,N., Pereira,E.B., Nafria,R.,andRamíez, P.P.,“X-ray diffraction study of Co3O4activation under ethanolsteam-reforming,” Catalysis Today, Vol. 126, pp. 148–152, 2007.
[37]Idriss, H.,Diagne, C.,Hindermann, J.P.,Kiennemann, A., and Barteau, M. A., “Reactions of acetaldehyde on CeO2 and CeO2-supported Catalysts,”Journal of Catalysis, Vol. 155, pp. 219-237, 1995.
[38]Song, H., and Ozkan, U.S., “Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility,” Journal of Catalysis, Vol. 261, pp. 66–74, 2009.
[39]Reddy, B. M., Thrimurthulu, G., and Katta, L., “ Structural characteristics and
catalytic activity of nanocrystalline Ceria-Praseodymia solid solutions,”Joural of Physical Chemical, Vol. 113, pp.15882-15890, 2009
[40]Wang, F., Cai, W., Provendier, H., Schuurman, Y., Descorme, C., Mirodatos, C.,and Wenjie, S., “ Hydrogen production from ethanol steam reforming overIr/CeO2 catalysts: Enhanced stability by PrOx promotion,”Joural of hydrogen
Vol. 36, pp.13566-13574, 2011
[41]Hu, X., and Lu, G. “Investigation of the steam reforming of a series of modelcompounds derived from bio-oil for hydrogen production,” Appl Catal B, Vol.88, pp. 376-85, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top