跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 00:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賀盛志
研究生(外文):Ho Sheng Chih
論文名稱:植基於模函數之適應性空間域影像藏密技術之研究
論文名稱(外文):Adaptive Data Hiding in Spatial Domain Based on Modulus Function
指導教授:瞿忠正瞿忠正引用關係
口試委員:婁德權黃博惠陳同孝官大智賴義鵬喻石生
口試日期:2012-07-06
學位類別:博士
校院名稱:國防大學理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:81
中文關鍵詞:資訊隱藏藏密學模函數可適應性藏密法
外文關鍵詞:Data hidingSteganographyModulus FunctionAdaptive data hiding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水能載舟亦能覆舟,數位化雖然帶給人類許多好處,帶相對的也衍生出許多相對應的安全與犯罪問題。為了避免秘密訊息被有心人士收集分析,技術藏密學(Steganography)應運而生,藉由某些數位媒體檔案(如圖像檔、影像檔、音訊檔..等)中有許多冗餘的部分,即使稍做修改也不影響檔案的功能,發展相關的技術將前述密碼學加密後的訊息嵌入數位媒體檔案中。
資訊科技的快速發展,也造就了許多軍事事務上的革新,舉凡人事、情報、作戰、後勤等傳統軍事事務,皆因導入資訊系統與科技而提高效率。利用資訊科技以增強軍事實力的例子各國皆然,但在效率提升的同時,也增加了許多資安風險。
本論文以模函數藏密法為基礎,並利用混合式藏密技術與適應性藏密技術等概念,提出了三種更具效率之藏密方法。除了於藏密量及藏密影像品質優於以往文獻所提出的方法之外,並增加演算法的彈性,能依據藏密量動態調整演算法的參數,以求得藏密影像品質的最佳化。除此之外,藏密影像還可通過基本的藏密分析偵測,以發揮欺敵的效果,增強秘密訊息傳遞的隱匿性與安全性。

The innovative network attacks are more frequent than before with the rapid development of Internet. How to protect the security of the secret information has become an important issue. Cryptography and information hiding are the two important technologies of communication security. Cryptography is the process of converting ordinary information into incomprehensible message, and the adversaries cannot understand the real meaning of the message. Information hiding is to hide secret information in a cover medium (i.e. image, video or audio) and the adversaries cannot perceive the existence of the secret information from the media of the embedded information.
In this dissertation, three novel spatial domain data hiding algorithms are proposed. The first proposed algorithm is a hybrid high-capacity steganography in spatial domain. This algorithm is a combination of pixel-value differencing (PVD) steganography method and modulus function steganography method, and we resolved the compatibility issues of the above two steganography methods. The second proposed algorithm is based on dynamic threshold strategy and modified least significant bit (LSB) substitution. This dynamic strategy can adjust hiding capacity consistent with the length of secret message, and the secret data can be embedded in stego-image as evenly as possible. Quality of stego-image would be improved by this way. The third proposed algorithm is based on capacity requirement and MSB estimation. This algorithm has an adaptive mechanism to adjust each pixel’s hiding capacity based on the occurrences types of 2-MSBs and the length of secret message.
The experimental results have demonstrated that the proposed algorithms not only achieve a larger embedding capacity, but also have better visual quality of stego-image than many other proposed algorithms. In security issues, experimental results also prove that the proposed methods can successfully withstand basic steganalysis.

目錄

誌謝 ii
中文摘要 iii
Abstract iv
目錄 vi
表目錄 ix
圖目錄 x
1. 緒論 1
1.1 研究背景 1
1.2 研究動機與方向 4
1.3 論文架構 6
2. 數位影像資訊隱藏技術之介紹 9
2.1 前言 9
2.2 數位影像藏密技術 9
2.2.1 藏密學、數位浮水印與密碼學之比較 9
2.2.2 數位影像藏密技術的分類 13
2.2.3 數位影像藏密技術之特性需求 15
3. 空間域藏密技術 16
3.1 單一技術空間域藏密 16
3.1.1 最低位元藏密技術 16
3.1.1.1 簡單最低位元藏密技術 16
3.1.1.2 植基於基因演算法之最低位元藏密技術 17
3.1.1.3 植基於像素值調整最佳化之最低位元藏密技術 18
3.1.2 模函數藏密法 19
3.1.3 像素差藏密法 20
3.2 混合技術空間域藏密 22
3.2.1 PVD與LSB混合技術藏密法 22
3.2.2 利用 PVD技術之LSB藏密法 24
4. 植基於像素差與模函數之混合式藏密技術 28
4.1 簡介 28
4.2 植基於模函數之混合式藏密技術 29
4.2.1 藏密程序 30
4.2.2 取密程序 30
4.2.3 實例說明 31
4.3 實驗結果 31
4.3.1 藏密效能實驗 32
4.3.2 安全性實驗 36
4.3.3 分析與討論 43
4.4 小結 44
5. 植基於動態門檻值與藏密需求之適應性藏密技術 46
5.1 簡介 46
5.2 本章所提之藏密技術介紹 46
5.2.1 前處理程序 47
5.2.2 藏密程序 48
5.2.3 取密程序 50
5.2.4 實例 51
5.3 實驗結果 51
5.4 討論 57
5.5 小結 59
6. 植基於最高位元統計與藏密需求之適應性藏密技術 60
6.1 簡介 60
6.2 本章所提之藏密技術介紹 60
6.2.1 前置處理程序 61
6.2.2 藏密程序 62
6.2.3 取密程序 63
6.2.1 實例說明 64
6.3 實驗結果 64
6.4 分析與討論 69
6.5 小結 70
7. 結論與未來研究方向 72
7.1 結論 72
7.2 未來展望 73

參考文獻

[1]王旭正、柯建萱, “資訊媒體安全-偽裝學與數位浮水印”, 第15頁, 2007年。
[2]Petitcolas, F. A. P., Anderson, R. J., and Kuhn, M. G., “Information Hiding – A Survey,” Proceedings of the IEEE, Vol. 87, No. 7, pp. 1062-1078, 1999.
[3]Cheddad, A., Condell, J., Curran, K., and Kevitt, P. M., “Digital Image Steganography: Survey and Analysis of Current Methods,” Signal Processing, Vol. 90, No. 3, pp. 727-752, 2010.
[4]Memon, N. and Wong, P. W., “Protecting Digital Media Content,” Communications of the ACM, Vol. 41, No. 7, pp. 35-43, 1998.
[5]Chang, C. C., Lin, C. C., Tseng, C. S., and Tai, W. L., “Reversible Data Hiding in DCT-based Compressed Images,” Information Sciences, Vol. 177, No. 13, pp. 2768-2786, 2007.
[6]Chang, C. C., Chen, T. S., and Chung, L. Z., “A Steganographic Method Based upon JPEG and Quantization Table Modification,” Information Sciences, Vol. 141, pp.123-138, 2002.
[7]Wong, K. S., Qi, X., and Tanak, K., “A DCT-based Mod-4 Steganographic Method,” Signal Processing, Vol. 87, No. 6, pp. 1251-1263, 2007.
[8]Chen, W. Y., “Color Image Steganography Scheme Using DFT, SPIHT Codec, and Modified Differential Phase-Shift Keying Techniques,” Applied Mathematics and Computation, Vol. 196, No. 1, pp. 40-54, 2008.
[9]Chae, J. J. and Manjunath, B. S., “A Robust Embedded Data from Wavelet Coefficients,” Proceedings of the SPIE International Conference on Storage and Retrieval for Image and Video Databases VI, San Jose, CA, pp. 308-317, 1998.
[10]Wang, Y. J., Doherty, F., and Van Dyck, R. E., “A Wavelet-Based Watermarking Algorithm for Ownership Verification of Digital Images,” IEEE Transactions on Image Processing, Vol. 11, No. 2, pp. 77-88, 2002.
[11]Bender, W., Gruhl, D., Morimoto, N., and Lu, A., “Techniques for Data Hiding,” IBM Systems Journal , Vol.35, No.3 and 4, pp. 313-336, 1996.
[12]Chan, C. K. and Cheng, L. M., “Hiding Data in Images by Simple LSB Substitution,” Pattern Recognition, Vol. 37, No. 3, pp. 469-474, 2004.
[13]Wang, R. Z., Lin, C. F., and Lin, J. C., “Image Hiding by Optimal LSB Substitution and Genetic Algorithm,” Pattern Recognition, Vol. 34, No. 3, pp. 671-683, 2001.
[14]Luo, X. Y., Wang, D. S., Wang, P., and Liu, F. L., “A Review on Blind Detection for Image Steganography,” Journal of Signal Processing, Vol. 88, pp. 2138-2157, 2008.
[15]Thien, C. C. and Lin, J. C., “A Simple and High-Hiding Capacity Method for Hiding Digit-by-Digit Data in Images Based on Modulus Function,” Pattern Recognition, Vol. 36, pp. 2875-2881, 2003.
[16]Wu, D. C. and Tsai, W. H., “A Steganographic Method for Images by Pixel-Value Differencing,” Pattern Recognition Letters, Vol. 24, pp. 1613-1626, 2003.
[17]Wu, H. C., Wu, N. I., Tsai, C. S., and Hwang, M. S., “Image Steganographic Scheme Based on Pixel-Value Differencing and LSB Replacement Methods,” IEE Proceedings – Vision Image and Signal Processing, Vol. 152, pp. 611-615, 2005.
[18]Yang, C. H. , Weng, C. Y., Wang, S. J., and Sun, H. M., “Adaptive Data Hiding in Edge Areas of Images with Spatial LSB Domain Systems,” IEEE Transactions on Information Forensics and Security, Vol 3, No 3, pp 488-497, 2008.
[19]Ni, Z., Shi, Y. Q., Ansari, N., and Su, W., “Reversible Data Hiding,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 16, No. 3, pp. 354-362, 2006.
[20]Tian, J., “Reversible Data Embedding Using A Difference Expansion,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 8, pp. 890-896, 2003.
[21]Fridrich, J., Goljan, M., and Du, R., “Detecting LSB Steganography in Color, and Gray-Scale Images,” IEEE Multimedia, Vol. 8, No. 4, pp 22- 28, 2001.
[22]Shie, S. C. and Lin, S. D., “Data Hiding Based on Compressed VQ Indices of Images, ” Computer Standards & Interfaces, Vol. 31, Issue 6, pp 1143-1149, 2009.
[23]Lee, C. F., Chen, H. L., and Lai, S. H., “An Adaptive Data Hiding Scheme with High Embedding Capacity and Visual Image Quality Based on SMVQ Prediction through Classification Codebooks,” Image and Vision Computing, Vol. 28, Issue 8, pp. 1293-1302, 2010.
[24]Lin, I. C., Lin, Y. B., and Wang, C. M., “Hiding Data in Spatial Domain Images with Distortion Tolerance, ” Computer Standards & Interfaces, Vol. 31, Issue 2, pp. 458-464, 2009.
[25]Lee, Y., Kim, H., and Park, Y., “A New Data Hiding Scheme for Binary Image Authentication with Small Image Distortion,” Information Sciences, Vol. 179, Issue 22, pp. 3866-3884, 2009.
[26] Westfeld, A. and Pfitzmann, A., “Attacks on Steganographic Systems,” Proceedings of the 3rd International Workshop on Information Hiding, Dresden, Germany, pp. 61-76, 1999.
[27] Wang, C. M., Wu, N. I., Tsai, C. S., and Hwang, M. S., “A High Quality Steganography Method with Pixel-Value Differencing and Modulus Function,” Journal of Systems and Software, Vol. 81, No. 1, pp. 150-158, 2008.
[28] Luo, H., Yu, F. X., Chen, H., Huang, Z. L., Li, H., and Wang, P. H., “Reversible Data Hiding Based on Block Median Preservation,” Information Sciences, Vol. 181, No. 2, pp. 308-328, 2011.
[29] Kim, K, S., Lee, M. J., Lee, H. Y., and Lee, H. K., “Reversible Data Hiding Exploiting Spatial Correlation between Sub-Sampled Images,” Pattern Recognition, Vol. 42, No. 11, pp. 3083-3096, 2009.
[30] Chang, C. C. and The Duc Kieu, “A Reversible Data Hiding Scheme Using Complementary Embedding Strategy,” Information Sciences, Vol. 180, No. 16, pp. 3045-3058, 2010.
[31] Yang, W. J., Chung, K. L., and Liao, H. Y., “Efficient Reversible Data Hiding for Color Filter Array Images,” Information Sciences, Vol. 190, pp. 208-226, 2012.
[32] Lee, C. F. and Huang, Y. L., “An Efficient Image Interpolation Increasing Payload in Reversible Data Hiding,” Expert Systems with Applications, Vol. 39, No. 8, pp. 6712-6719, 2012.
[33] Peng, F., Li, X., and Yang, B., “Adaptive Reversible Data Hiding Scheme Based on Integer Transform,” Signal Processing, Vol. 92, No. 1, pp. 54-62, 2012.
[34] Lou, D. C., Hu, C. H., and Chiu, C. C., “Steganalysis for Multilevel Reversible Data Hiding Based on Histogram Modification of Difference Images,” International Journal of Innovative Computing Information and Control, Vol. 7, No.9, pp. 5429-5443, 2011.
[35] Lou, D. C., Hu, C. H., and Chiu, C. C., “Steganalysis of Histogram Modification Reversible Data Hiding Scheme by Histogram Feature Coding,” International Journal of Innovative Computing Information and Control, Vol. 7, No. 11, pp. 6571-6583, 2011.
[36] Lou, D. C., Chou, C. L., Tso, H. K., and Chiu, C. C., “Active Steganalysis for Histogram-Shifting Based Reversible Data Hiding,” Optics Communications, Vol. 285, No. 10-11, pp. 2510-2518, 2012.
[37] Lou, D. C., Hu, C. H., Chou, C. L., and Chiu, C. C., “Steganalysis of HMPD Reversible Data Hiding Scheme,” Optics Communications, Vol. 284, No. 23, pp. 5406-5414, 2011.
[38] Zhang, T., Li, W., Zhang, Y., Zheng, E., and Ping, X., “Steganalysis of LSB Matching Based on Statistical Modeling of Pixel Difference Distributions,” Information Sciences, Vol. 180, No. 23, pp. 4685-4694, 2010.
[39] Sabeti, V., Samavi, S., Mahdavi, M., and Shirani, S., “Steganalysis and Payload Estimation of Embedding in Pixel Differences Using Neural Networks,” Pattern Recognition, Vol. 43, No. 1, pp. 405-415, 2010.
[40] Liu, Q., Sung, A. H., Qiao, M., Chen, Z., and Ribeiro, B., “An Improved Approach to Steganalysis of JPEG Images,” Information Sciences, Vol. 180, No. 9, pp. 1643-1655, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top