跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃卓礽
研究生(外文):Huang, Chuo-Jeng
論文名稱:具高性能毛細結構迴路式熱管之研究
論文名稱(外文):Parametric Study on High Performance Wick in a Loop Heat Pipe
指導教授:吳聖俊
指導教授(外文):Wu, Shen-Chun
口試委員:黃鎮江林唯耕施聖洋曾培元郭智賢吳聖俊張枝成孔健君
口試委員(外文):Hwang, Jenn-JiangLin, Wei-KengShy, Shenq-YangTzeng, Pei-YuanKuo, Zeal-SainWu, Shen-ChunChang, Jy-ChengKung, Chien-Chun
口試日期:2012-07-06
學位類別:博士
校院名稱:國防大學理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:137
中文關鍵詞:迴路式熱管蒸氣膜雙孔徑毛細結構孔洞成型劑雙層毛細結構厚度效應熱傳性能
外文關鍵詞:loop heat pipevapor blanketbiporous wickpore-forming agentdouble-layer wickthickness effectheat transfer enhancement
相關次數:
  • 被引用被引用:1
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在開發高性能毛細結構迴路式熱管,著重在毛細結構的研發,針對毛細結構先後遭遇的難題,分別採用雙孔徑毛細結構策略及雙層毛細結構策略,提升迴路式熱管至更高性能。
本研究首先針對迴路式熱管操作時,毛細結構在高瓦數,其表面累積產生蒸汽膜造成接觸熱阻過大,致使性能無法提升,採用具大小孔徑設計的雙孔徑毛細結構的策略,利用大孔洞增加蒸汽通道、小孔洞輸送液態工質,有效克服前述接觸熱阻過大的問題。而雙孔徑毛細結構重要參數(孔洞成型劑粒徑與含量),優化後約在粒徑為250~297µm及含量為70vol%,實驗結果是最大熱傳量為800W、熱阻為0.095℃/W左右、熱通量為36W/cm2,同時首度將迴路式熱管的熱阻降至10-2℃/W等級。唯在性能優化過程中卻衍生出,即在更高瓦數操作時,遭遇到結構脆弱及毛細力不足的問題。
針對上述策略優化時衍生之問題,本研究接著採用具內、外層設計之雙層毛細結構的策略,即外層毛細結構為雙孔徑的設計,採用其優點以利排放蒸汽、內層毛細結構為單孔徑的設計,採用其優點用以支撐並加強結構體及增加毛細力輸送工質,有效克服雙孔徑毛細結構在更高瓦數時新衍生的難題。在參數優化後,外層雙孔徑毛細結構佔總毛細結構厚度0.57時,實驗結果是最大熱傳量為1060W、熱阻約為0.067℃/W左右、熱通量為48W/cm2,超越目前文獻報導的最佳性能約700W的成果,也首度將迴路式熱管的最高瓦數提升至103W等級。現階段即為具高性能之迴路式熱管。

The purpose of this article is to develop a loop heat pipe (LHP) with high-performance capillary structure (wick), and further investigate wick structure. To solve heat transfer performance problem on wick of LHP, we adopt the strategy in biporous wick and double-layer wick for LHP to improve heat transfer performance for higher heat flux.
When operating in high heat load, the LHP can produce vapor blanket in the wick surface, but the contact resistance is too large so as to affect heat transfer performance. To handle this, we adopt biporous wick strategy with large and small pores, which have different channel to transport vapor and working fluid, respectively. The biporous wick strategy can overcome the problem that the contact resistance is too large. Then, we adjust the important parameters: particle size of pore former is 250-297µm and pore former content is 70% by volume. The experiment result shows that the optimum heat load is 800W, thermal resistance is 0.095℃/W, and heat flux is 36 W/cm2. Unfortunately, we encounter a new problem that at higher heat flux structural strength is not hard and capillary force is not enough.
Furthermore, we adopt double-layer wick strategy to overcome the above problem. The properties of double-layer wick different structures are utilized to enhance heat transfer performance in a LHP. The outer layer of the double-layer wick is biporous wick, which utilizes large and small pores as channels to transport vapor and working fluid, respectively. The inner layer of the double-layer wick is monoporous wick, which provides a high capillary force and increases the strength of the outer layer. Based on the design strategy, a process for optimizing parameters of double-layer wick is developed. When the thickness ratio of outer layer to total is 0.57, the experiment result shows that the heat load is 1060W, thermal resistance is 0.067℃/W, and heat flux is 48 W/cm2. Our result demonstrates past the performance of the present research reported in the literature, which heat load is 700W. Therefore, we develop a high performance loop heat pipe.

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 ix
圖目錄 x
符號說明 xiii
1. 緒論 1
1.1 迴路式熱管的發展 1
1.1.1 迴路式熱管簡介 2
1.1.2 研究現況 3
1.1.3 研究動機 5
1.2 文獻回顧 11
1.3 研究目的 17
2. 迴路式熱管的操作原理與限制 18
2.1 迴路式熱管的基本操作原理 18
2.2 系統的操作限制 20
2.2.1 毛細限制 20
2.2.2 啟動限制 21
2.2.3 液體過冷限制 21
2.2.4 補償室體積限制 22
2.3 熱阻分析 23
2.3.1 蒸發器熱阻 24
2.3.2蒸汽段熱阻 25
2.3.3 冷凝器熱阻 26
3. 實驗設備與方法 30
3.1 迴路式熱管的設計與製作 30
3.1.1 迴路式熱管的設計 30
3.1.2 迴路式熱管的製作 37
3.2 迴路式熱管的性能測試 43
3.2.1 測試設備 43
3.2.2 性能評估 45
3.3 誤差分析 47
4. 雙孔徑毛細結構的實驗結果與討論 48
4.1 毛細結構問題概述 48
4.2 雙孔毛細結構初步成果 48
4.2.1 雙孔毛細結構製作方式 48
4.2.2 雙孔毛細結構製作成果 49
4.2.3 具雙孔徑毛細結構迴路式熱管初步性能比較 50
4.3 雙孔毛細結構性能優化 53
4.3.1 重要參數的選擇 53
4.3.2 製程參數的範圍 53
4.3.3 雙孔毛細結構優化性能比較 54
4.4 雙孔徑毛細結構實驗小結 74
5. 雙層毛細結構的實驗結果與討論 76
5.1 雙孔徑毛細結構問題概述 76
5.2 雙層毛細結構迴路式熱管初步結果 77
5.2.1 雙層毛細結構製作方式 77
5.2.2 雙層毛細結構製作成果 80
5.2.3 雙層毛細結構初步性能比較 80
5.3 雙層毛細結構性能優化 84
5.3.1 製程參數的選擇 84
5.3.2 製程參數的設定 85
5.3.3 雙層毛細結構優化性能比較 86
5.3.4 綜合策略評估與選擇 91
6. 結論與建議 95
6.1 結論 95
6.2 建議 96
參考文獻 98
論文發表 118
自傳 119

[1]Gerasimov, Y. F., Maydanik, Y. F., Shchegolev, G. T., Filippov, G. A., Starikov, L. G., Kiseev, V. M., and Dolgirev, Y. E., “Heat Pipe,” USSR Inventor's Certificate #449213, 1974.
[2]Maydanik, Y. F., Vershinin, S. V., Kholodov, V. F., and Dolgirev, J. E., “Heat Transfer Apparatus,” United States Patent, No. 4515209, 1985.
[3]http://www.thermacore.com/ (2012.07.01)。
[4]http://www.sciencedirect.com/ (2012.07.01)。
[5]http://www.springerlink.com/?MUD=MP (2012.07.01)。
[6]http://ieeexplore.ieee.org/Xplore/dynhome.jsp?tag=1 (2012.07.01)。
[7]Chernysheva, M. A., Vershinin, S. V., and Maydanik, Y. F., “Operating Temperature and Distribution of a Working Fluid in LHP,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 2704-2713, 2007.
[8]Lin, F. C., Yeh, C. C., Wu, S. C., and Chen, Y. M., “Mathematical Model of Heat and Mass Transfer in a Wick Structure of a Loop Heat Pipe,” IEEE IMPACT, pp. 356-359, 2009.
[9]Wu, S. C., Huang, C. J., and Chen, Y. M., “Investigation of the Surface Groove Effect of Capillary Structure in the Performance of the Loop Heat Pipe,” Applied Thermal Engineering (2012), Submitted.
[10]Vityaz, P. A., Konev, S. K., Medvedev, V. B., and Sheleg, V. K., “Heat Pipes with Bidispersed Capillary Structures,” Proceedings of the 5th International Heat Pipe Conference, Tsukuba Science City, Japan, Vol. 1, pp. 127-135, 1984.
[11]Yeh, C. C., Liu, B. H., and Chen, Y. M., “A Study of Loop Heat Pipe with Biporous Wicks,” Heat and Mass Transfer, Vol. 44, No. 12, pp. 1537-1547, 2008.
[12]Wu, S. C., Huang, C. J., Hsieh, B. H., and Chen, Y. M., “Novel Manufacturing Process of Biporous Wick in a Loop Heat Pipe,” Experimental Thermal and Fluid Science (2012), Submitted.
[13]Wu, S. C., Huang, C. J., Chen, S. H., and Chen, Y. M., “Manufacturing and Testing of the Double-Layer Wick Structure in a Loop Heat Pipe,” International Journal of Heat and Mass Transfer (2012), Submitted.
[14]Konev, S. V., Polasek, F., and Horvat, L., “Investigation of Boiling in Capillary Structures,” Heat Transfer-Soviet Research, Vol. 19, No. 1, pp. 14-17, 1987.
[15]North, M. T., Rosenfeld, J. H., and Shaubach, R. M., “Liquid Film Evaporation from Bidisperse Capillary Wicks in Heat Pipe Evaporators,” Proceedings of the 9th International Heat Pipe Conference, Albuquerque, NM, pp. 143-147, 1995.
[16]North, M. T., Sarraf, D. B., Rosenfeld, J. H., Maydanik, Y. F., and Vershinin, S., “High Heat Flux Loop Heat Pipes,” Proceedings of the 6th European Symposium on Space Environmental Control Systems, Noordwijk, The Netherlands, pp. 371-376, 1997.
[17]Chen, Z. Q., Cheng, P., and Zhao, T. S., “An Experimental Study of Two Phase Flow and Boiling Heat Transfer in Bidispersed Porous Channels,” International Communications in Heat and Mass Transfer, Vol. 27, No. 3, pp. 293-302, 2000.
[18]Cao, X. L., Cheng, P., and Zhao, T. S., “Experimental Study of Evaporative Heat Transfer in Sintered Copper Bidispersed Wick Structures,” Journal of Thermophysics and Heat Transfer, Vol. 16, No. 4, pp. 547-552, 2002.
[19]Wang, J. and Catton, I., “Vaporization Heat Transfer in Biporous Wicks of Heat Pipe Evaporators,” Proceedings of the 13th International Heat Pipe Conference, Shanghai, China, Vol. 2, pp. 76-86, 2004.
[20]Maydanik, Y. F., “Loop Heat Pipes,” Applied Thermal Engineering, Vol. 25, No. 5-6, pp. 635-657, 2005.
[21]Semenic, T. and Catton, I., “Boiling and Capillary Limit Enhancement of a Heat Pipe Wick Using Biporous Wick Capillary Structure,” Annals of the Assembly for International Heat Transfer Conference 13, PRT-18 pages, 2006.
[22]Hartenstine, J. R., Richard, W., Bonner III, Montgomery, J. R., and Semenic, T. “Loop Thermosyphon Design for Cooling of Large Area, High Heat Flux Sources,” Proceedings of ASME Summer Heat Transfer Conference, Paper Number IPACK2007-33993, 2007.
[23]Semenic, T., Lin, Y. Y., Catton, I., and Sarraf, D. B., “Use of Biporous Wicks to Remove High Heat Fluxes,” Applied Thermal Engineering, Vol. 28, pp. 278-283, 2008.
[24]Lu, X. Y., Hua, T. C., Liu, M. J., and Cheng, Y. X., “Thermal Analysis of Loop Heat Pipe Used for High-power LED,” Thermochimica Acta, Vol. 493, pp. 25-29, 2009.
[25]Yeh, C. C., Chen, C. N., and Chen, Y. M., “Heat Transfer Analysis of a Loop Heat Pipe with Biporous Wicks,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 4426-4434, 2009.
[26]Li, J., Zou, Y., and Cheng, L., “Experimental Study on Capillary Pumping Performance of Porous Wicks for Loop Heat Pipe,” Experimental Thermal and Fluid Science, Vol. 34, No. 8, pp. 1403-1408, 2010.
[27]Maydanik, Y. F., Vershinin, S., Chernysheva, M., and Yushakova, S., “Investigation of a Compact Copper-Water Loop Heap Pipe with a Flat Evaporator,” Applied Thermal Engineering, Vol. 31, pp. 3533-3541, 2011.
[28]Berti, L. F., Santos, P. H. D., Bazzo, E., Janssen, R., Hotza, D., and Rambo, C. R., “Evaluation of Permeability of Ceramic Wick Structures for Two Phase Heat Transfer Devices,” Applied Thermal Engineering, Vol. 31, pp. 1076-1081, 2011.
[29]Xu, J., Zou, Y., Fan, M., and Cheng, L., “Effect of Pore Parameters on Thermal Conductivity of Sintered LHP Wicks,” International Journal of Heat and Mass Transfer, Vol. 55, pp. 2702-2706, 2012.
[30]Li, H., Liu, Z., Chen, B., Liu, W., Li, C., and Yang, J., “Development of Biporous Wicks for Flat-Plate Loop Heat Pipe,” Experimental Thermal and Fluid Science, Vol. 37, pp. 91-97, 2012.
[31]Ku, J., “Operating Characteristics of Loop Heat Pipes,” SAE paper, 1999-01-2007.
[32]Wu, S. C., Huang, C. J., Yang, W. H., Lai, J. H., Gao, J. H., and Lee, Y. W., “Effect of Working Fluid Filling Amount in Loop Heat Pipes,” World Academy of Science, Engineering and Technology, Vol. 63, pp. 715-719 2012,
[33]Faghri, A., “Heat Pipe Science and Technology,” Washington, D.C. Taylor & Francis, pp. 210-257, 1995.
[34]Riehl, R. R., “Comparing the Behavior of a Loop Heat Pipe with Different Elevations of the Capillary Evaporator,” SAE paper, 2004-01-2510.
[35]Baumann, J. and Rawal, S., “Viability of Loop Heat Pipes for Space Solar Power Applications,” AIAA Thermophysics Conference 35th, Anaheim, CA, Vol. 11, pp. 14-23, 2001.
[36]Tracey, V. A., “Pressing and Sintering of Nickel Powders,” The International Journal of Powder Metallurgy & Powder Technology, Vol. 20, No. 4, pp. 281-285, 1984.
[37]http://baike.baidu.com/view/591731.htm (2012.07.01)。
[38]Kline, S. J. and McClintock, F. A., “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, Vol. 75, pp. 3-9, 1953.
[39]Wu, S. C., Huang, C. J., and Gao, J. H., “Effect of Filling Powder Volume Rate in Wick Manufactured for Loop Heat Pipes,” Advanced Materials Research, Vol. 488, 321-327, 2012.
[40]Wu, S. C., Huang, C. J., Wei, K. H., and Chen, Y.M., “Enhanced Performance of Monoporous Wick Applications at Loop Heat Pipe by Experimental Design,” Heat Transfer Engineering (2012), Submitted.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊