跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 03:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝文吉
研究生(外文):Hsieh, Wenchi
論文名稱:小型垂直軸式風機性能分析與研製
論文名稱(外文):Performance Study and Fabricating of a Small Straight-Bladed VAWT
指導教授:賴正權,苗志銘
指導教授(外文):Lai, Chengchyuan, Miao, Jrming
口試委員:戴昌賢楊鏡堂施聖洋牛仰堯苗 志 銘劉宗龍賴正權
口試委員(外文):Tai, ChanghsienYang, JingtangShy, ShenqyangNiu, YangyaoMiao, JrmingLiu,TsunglongLai, Chengchyuan
口試日期:2012-06-29
學位類別:博士
校院名稱:國防大學理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:120
中文關鍵詞:直葉片型垂直軸式風機NACA 4系列翼型數值模擬風洞實驗複合型垂直軸式風機
外文關鍵詞:H-Rotor VAWTNACA 4-digital series blade-sectionNumerical SimulationWind -Tunnel ExperimentsHybrid VAWT System
相關次數:
  • 被引用被引用:3
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
本論文運用風洞實驗、數值模擬、田口直交表與全因子實驗設計之理論方法,探討適用於台灣都市及低風速(4~12 m/s)區域環境下之小型垂直軸式風機葉片構型為主要研究目的。以台灣業界現有小型風機規格及文獻中最常使用之 NACA 4系列葉片構型為主要分析與研製標的,研究過程中先藉由L9田口直交表配合二維數值模擬與風洞實驗初步比較出具高升阻比之NACA6422、NACA6412及NACA6404等翼構型,相互與文獻中常使用之NACA0022對稱翼及業界常用之NACA4412葉片構型進行小尺度風機實驗驗證。藉此探討風機葉片翼構型在不同厚度(Thickness)、弧線彎曲度(Camber)、葉片裝置角度(Setting Angle)、發電機負載阻抗(Extra Loading)及風速(Wind Speed)等因子條件下對風機整體輸出性能之影響,本論文經上述研究程序業已完成NACA 4系列翼構型應用於風機系統的尋優分析與風力發電機輸出功率測試平台的建置。
本論文主要目的有三:首先運用二維CFD方法完成具高升/阻比NACA 4系列風機葉片參數資料庫建置,並透過實驗設計法、風機輸出功率量測與變異數分析,完成確認適用於低雷諾數5.3 104~3.9 105風速環境之NACA 4系列之葉片構型,此研發流程可供風機葉片設計之參考。其次,為提升業界裝置NACA 4412葉片風機之輸出功率,本研究建置完成以外圈升力型NACA4412翼型搭配內圈為三片Savonius阻力型之「複合式葉片垂直軸式風機」,接著以CFD及風洞實驗分析整體複合式風機系統葉片之氣動力特性及葉片受力與力矩之關係。最後,以經風洞實驗所確認之NACA6422翼型,實際製作發電功率為100瓦之風機葉片,將其設置在本研究所建置之風力發電機輸出功率測試平台,再與業界同尺度NACA 4412風機葉片進行測試比較,藉此可提供後續開發小型發電功率在3kW以下之垂直軸式風機葉片設計與製造之參考。
本論文主要研究貢獻面分述如下:
在數值模擬分析部份,本論文已成功建置2-D一致性複合式網格 (Conformal Hybrid Mesh) 結構,並運用動態滑移網格技術模擬葉片實際旋轉運動,經採用Realizable k-ε紊流模式及Simple算則之設定,數值結果與風洞實驗的Cp值相近且趨勢一致。
在風洞實驗分析部份,本論文參考相關文獻葉片尺寸及風洞實驗阻塞率效應之考量,完成風力發電機輸出功率測試平台建置與五種NACA 4系列翼構型葉片輸出性能量測與比較。其次,亦完成100瓦等級之NACA4412或NACA6422葉片結合Savonius阻力型葉片裝置成複合型垂直軸式風機系統之性能驗證,實驗結果已證明加裝Savonius葉片對業界現有NACA4412之三葉片構型垂直軸風機之Cp值提升約90.4%,而對四葉片構型之Cp值則提升約3.5%之效益。
本論文不僅完成複合式葉片風機系統之製作,且經5歐姆負載測試分析發現,100瓦尺度之NACA6422風機與業界NACA4412葉片風機相互比較,兩者皆以四葉片之構型為佳。結果顯示NACA4412最佳功率運轉點在λ=0.75~0.78之間(15.8~16.7m/s);而NACA6422最佳功率運轉點則在λ=0.9~1.4之間(8.4~11.4m/s),操作區間範圍較大且最低輸出功率之切入風速(Cut-in Wind Speed)較低。顯見選用NACA6422翼型具大幅提升風機輸出效率並可達成針對台灣地區之風速考量(4~12 m/s)之研究目標,其相關研究所獲得之參數均可提供未來開發垂直式風機葉片設計與製造之參考。

The purpose of this study is to analyze, via CFD methods, L9 Taguchi orthogonal array, wind-tunnel experiments and 33 experiment design method, NACA 4-digital series blade-section for a small vertical-axis-wind-turbine (VAWT) operating under the wind speed of 4~12m/s (Reynolds number ranged from 5.3 104 to 9 105). In this dissertation, the database of aerodynamic parameters for VAWTs were established by using L9 Taguchi orthogonal array, CFD simulations and wind-tunnel experiments to select the better geometry parameters of a blade-section for VAWTs. Five shapes of the NACA 4-digital series blade-section, NACA6422, NACA6412, NACA6404, NACA0022 and NACA4412 were selected to study the wind turbine performance affected by the blade-section of different thickness, camber, and blade setting angle when operating at different wind speeds and with extra loading.
Three main topics are included in this dissertation. The first topic is to establish the database of aerodynamic parameters for NACA 4-digital series blade-section. Secondly, for improving the performance of the commercialized NACA4412 straight-bladed VAWTs, a new configuration of VAWT combined with outer NACA4412 and inner Savonius blades (hybrid VAWT system) is successfully fabricated and its performance is also obtained by CFD and experiments. Finally, based on the experimental results, NACA6422 blade-sectin is selected to set up a 100W VAWT and to compare with the performance of the same 100W VAWT with NACA4412 blades. All results of this study can be applied to the blades design for VAWTs with the output power of 1~3kW.
The major contributions of this dissertation are listed as follows:
In CFD simulations, conformal hybrid meshes and dynamic meshes were used successfully for flow pattern calculation and aerodynamic analysis for VAWTs. Comparing the CFD predictions of CP (Power Coefficient) with experimental results, the agreements were quite well.
In wind-tunnel experiments, the test model was a H-Rotor VAWT. A platform for output power test for small VAWT was successfully set up. Five shapes of the NACA 4-digital series blade-section used in VAWTs were tested and studied. Experimental results showed that a hybrid VAWT system (added with Savonius blades inside) has CP about 90% higher than that of a VAWT with three NACA4412 blades and 3.5% higher than that of a four NACA4412 blades VAWT.
This study not only produced a hybrid VAWT system, but also proposed that the cambered-thick blade of NACA6422 is more suitable for VAWT systems in the densely populated urban areas. The experimental results also provide valuable information to design and fabricate VAWTs.

目錄
誌謝....................................................ii
摘要....................................................iii
ABSTRACT................................................v
表目錄...................................................x
圖目錄...................................................xi
1. 前言..................................................1
2. 文獻回顧...............................................9
2.1 垂直軸式風力發電機簡介..................................9
2.1.1 Savonius型葉片......................................10
2.1.2 Darrieus型葉片......................................10
2.1.3 H-Rotor葉片.........................................11
2.2 垂直軸式風力發電機葉片氣動力特性文獻說明...................15
2.3 影響垂直軸式風力發電機葉片幾何因子特性文獻說明..............17
2.3.1 葉片翼剖面構型........................................17
2.3.2 葉片裝置角效應........................................25
2.3.3 弦周比效應............................................28
3. 研究方法.................................................32
3.1 風洞實驗................................................32
3.1.1 吸氣式低速風洞校驗......................................32
3.1.2 風力機輸出功率測試平台..................................36
3.1.3 業界風力發電機輸出功率測試說明...........................37
3.1.4 NACA 4系列葉片選定及製作...............................41
3.2 全因子實驗設計法..........................................43
3.3 CFD數值模擬..............................................45
3.3.1 統御方程式.............................................46
3.3.2 紊流模型...............................................46
3.3.3 小型垂直軸式風機葉片滑動網格暫態流場驗證...................48
4. 風洞實驗結果分析...........................................59
4.1 適用小型垂直軸式風機葉片翼剖面構型(Airfoil section)選擇分析...59
4.1.1 風機葉片NACA0022葉片材料重量效應影響測試...................61
4.1.2 風機葉片NACA6404、6412及6422彎翼厚度差異比較測試...........62
4.1.3 全因子實驗設計法.........................................65
4.1.4 NACA 4系列翼構型搭配最佳裝置角分析比較....................71
4.2 風機葉片弦周比σ (Solidity)效應探討..........................73
4.3 複合式葉片風機系統實驗分析...................................76
4.3.1 三片式阻力型Savonius葉片功率輸出測試.......................76
4.3.2 NACA6422三片式葉輪搭配Savonius葉片功率輸出測試............78
4.3.3 NACA6422三~五片式葉輪機配Savonius葉片綜合比較.............80
4.4 全尺度100瓦型業界NACA4412風機葉片系統測試分析.................83
4.4.1 業界NACA4412葉片風機性能測試分析...........................84
4.4.2 業界NACA4412葉片加裝三葉片Savonius葉片測試分析..............84
4.5 全尺度100瓦型NACA6422風機葉片系統測試分析.....................87
4.5.1 NACA6422葉片製作流程......................................87
4.5.2 NACA6422與業界NACA4412葉片風機系統測試分析..................88
4.5.3 NACA6422葉片加裝三葉片Savonius葉片測試分析..................93
4.5.4 複合式葉片風機系統綜合比較..................................95
5. 數值模擬結果分析..............................................97
5.1 複合式風力機模擬與風洞實驗差異分析..............................99
5.2 NACA4412四葉片構型有無裝置Savonius葉片模擬分析................101
5.2.1 有無裝置Savonius葉片對Cm的影響分析...........................101
5.2.2 有無裝置Savonius葉片之流場特性分析........................... 104
6. 結論與未來研究方向.............................................108
6.1 結論 ........................................................108
6.2 未來研究方向..................................................111
參考文獻.........................................................113
論文發表.........................................................119
自傳.............................................................120


參考文獻
[1]Tang, Y. M., “A Study on Disaster Emergency Communications in Countries,” Journal of Crisis Managements, Vol. 7, No. 1, pp. 1-14, March 2010.
[2]經濟部,2008能源產業技術白皮書,經濟部能源局,第28-30頁,2008。
[3]黃朝君,“建築節能技術運用於國軍偏遠營區可行性之研究-以偏遠離島營區為例” ,國防大學理工學院軍事工程碩士班碩士論文,桃園,2009。
[4]吳學興,“建築節能技術運用於國軍偏遠營區可行性之研究-以高山營區為例”,國防大學理工學院軍事工程碩士班碩士論文,桃園,2009。
[5]經濟部能源局-行政院節能減碳推動會網站:
http://www.moeaboe.gov.tw/Policy/ReduceCO2Emission/default.html (2012.04.10)
[6]Allen, P., “Small Wind, Big Future,” British Wind Energy Association International Small Wind Conference, UK, 2009.
[7]黃聰文、伏和中、陳芙靜,“風力發電設備產業型貌與展望”,台灣機電工程服務專刊,2006。
[8]D’Ambrosio, M. and Marco, M., “Vertical Axis Wind Turbines: History, Technology and Applications,” Master thesis in Energy Engineering, University of Halmstad, Sweden, 2010.
[9]黃正忠,“垂直軸葉片之創新與設計”,聖約翰科技大學院自動化及機電整合研究所碩士論文,臺北,2008。
[10]Hwang, I., Min, S., Jeong, I., Lee, Y., and Kim, S., “Efficiency Improvement of a New Vertical Axis Wind Turbine by Individual Active Control of Blade Motion,” Smart Structures and Materials 2006: Smart Structures and Integrated Systems, Vol. 6173, pp.316-323, 2006.
[11]Islam, M., Ting, D. S. K., and Fartaj, A., “Design of a Special-Purpose Airfoil for Smaller - Capacity Straight-Bladed VAWT,” Wind Engineering, Vol. 31, No. 6, pp.401-424, 2007.
[12]Islam, M. D., Ting, S. K., Amin, M. R., and Fartaj, A., “Aerodynamic Factors Affecting Performance of Straight-Bladed Vertical Axis Wind Turbines,” 2007 ASME International Mechanical Engineering Congress and Exposition, Seattle, Washington, USA, pp. 331-341, 2007.
[13]Islam, M., Fartaj, A., and Carriveau, R., “Analysis of the Design Parameters Related to a Fixed-pitch Straight-Bladed Vertical Axis Wind Turbine,” Wind Engineering, Vol. 32, No. 5, pp. 491-507, 2008.
[14]Winchester, J. and Quayle, S., “Torque Ripple and Variable Blade Force: A Comparison of Darrieus and Gorlov-Type Turbines for Tidal Stream Energy Conversion,” The 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, pp. 668-676, 2009.
[15]Fiedler, A. J. and Tullis, S., “Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine,” Wind Engineering, Vol. 33, pp. 237-246, 2009.
[16]El-Samanoudy, M., Ghorab, A. A. E., and Youssef, S. Z., “Effect of Some Design Parameters on the Performance of a Giromill Vertical Axis Wind Turbine,” Ain Shams Engineering Journal, Vol. 1, Issue 1, pp. 85-95, 2010.
[17]Eriksson, S., Bernhoff, H., and Leijon, M., “Evaluation of Different Turbine Concepts for Wind Power,” Renewable and Sustainable Energy Reviews, Vol. 12, pp. 1419-1434, 2008.
[18]Carne, T. G. and James, G. H., “The Inception of OMA in the Development of Modal Testing Technology for Wind Turbines,” Mechanical Systems and Signal Processing, Vol. 24, pp. 1213-1226, 2010.
[19]黃子耀、林明志,“垂直風力發電機用之組合式葉片” ,專利號碼:M398023,2011。
[20]賀茂林,“可變風力資源收集應用裝置” ,專利號碼:M361560,2009。
[21]蘇紫雲,“可攜式不斷電、太陽能/風力發電整合系統” ,專利號碼:M396871,2011。
[22]Carrie, T. G., “Guy Cable Design and Damping for Vertical Axis Wind Turbines,” Report of SAND80-2669, National Technical Information Service, US Department of Commerce, pp. 1-35, 1980.
[23]Howell, R., Qin, N., Edwards, J., and Durrani, N., “Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine,” Renewable Energy, Vol. 35, pp. 412-422, 2009.
[24]Brochier, G., Fraunie, P., Beguier, C., and Paraschivoiu, I., “Water Channel Experiments of Dynamic Stall on Darrieus Wind Turbine Blades,” Journal of Propulsion and Power, Vol. 2, pp. 445-449, 1986.
[25]Berg, D. E., Klimes, P. C., and Stephenson, W. A., “Aerodynamic Design and Initial Performance Measurements for the Sandia 34-m Diameter Vertical-Axis Wind Turbine,” The 9th ASME Wind Energy Symposium, New Orleans, LA, 1990.
[26]Fujisawa, N. and Shibuya, S., “Observations of Dynamic Stall on Darrieus Wind Turbine Blades,” Journal of Wind Engineering & Industrial Aerodynamics, Vol. 89, pp. 201-214, 2001.
[27]Islam, M., Ting, D. S. K., and Fartaj, A., “Aerodynamic Models for Darrieus-Type Straight-Bladed Vertical Axis Wind Turbines,” Renewable & Sustainable Energy Reviews, Vol. 12, No. 4, pp. 1087-1109, 2008.
[28]Jacobs, E. N., Sherman, A., and Center, N. L. R., “Airfoil Section Characteristics as Affected by Variations of the Reynolds Number,” National Advisory Committee for Aeronautics Report 586, pp. 227-267,1937.
[29]Lissaman, P., “Low-Reynolds-Number Airfoils,” Annual Review of Fluid Mechanics, Vol. 15, pp. 223-239, 1983.
[30]Roberts, W. B., “Calculation of Laminar Separation Bubbles and Their Effect on Airfoil Performance,” AIAA Journal, Vol. 18, Issue 1, pp. 25-31, 1980.
[31]Null, W. and Shkarayev, S., “Effect of Camber on the Aerodynamics of Adaptive-Wing Micro Air Vehicles,” Journal of Aircraft, Vol. 42, pp. 1537-1542, 2005.
[32]Laiton, E.V., “Aerodynamic Lift at Reynolds Numbers Below 7x104,” AIAA Journal, Vol. 34, No. 9, pp. 1941-1942, 1996.
[33]Jr, Bastedo. WG. and Mueller, T., “Spanwise Variation of Laminar Separation Bubbles on Wings at Low Reynolds Numbers,” Journal of Aircraft, Vol. 23, No. 9, pp. 687-694, 1986.
[34]Pelletier, A. and Mueller, T., “Low Reynolds Number Aerodynamics of Low-Aspect-Ratio Thin/Flat/Cambered-Plate Wings,” Journal of Aircraft, Vol. 37, No. 5, pp. 825-832, 2000.
[35]Mueller, T., “Aerodynamic Measurements at Low Raynolds Numbers for Fixed Wing Micro-Air Vehicles,” Lectures Note of RTO AVT/VKI Special Course, Belgium, September13-17, 1999.
[36]Okamoto, M., “Aerodynamic Characteristics of the Wings and Body of a Dragonfly,” Journal of Experimental Biology, Vol. 199, pp. 281-294, 1996.
[37]Shyy, W., Klevebring F., Nilsson, M., Sloan, J., Carroll, B., and Fuentes, C., “Rigid and Flexible low Reynolds Number Airfoils,” Journal of Aircraft, Vol. 36, No. 3, pp. 523-529, 1999.
[38]Paraschivoiu, I., Trifu, O., and Saeed, F., “H-Darrieus Wind Turbine with Blade Pitch Control,” International Journal of Rotating Machinery, Article ID 505343 pp. 1-7, 2009.
[39]牛山泉,圖解風力發電入門,李漢庭出版社,臺灣,第63-111頁, 2010。
[40]Khan, M., Pillay, P., and Visser, K., “On Adapting a Small PM Wind Generator for a Multiblade, High Solidity Wind Turbine,” Energy Conversion, IEEE Transactions on Energy Conversion, Vol. 20, pp. 685-692, 2005.
[41]Kirke, B. K. and Lazauskas, L., “Limitations of Fixed Pitch Darrieus Hydrokinetic Turbines and the Challenge of Variable Pitch,” Renewable Energy, Vol. 36, pp. 893-897, 2011.
[42]Jorgensen, F., “How to Measure Turbulence with Hot-Wire Anemometers-A Practical Guide,” Dantec Dynamics A/S, Skovlunde, Denmark, pp. 32-33, 2002.
[43]Tamai, M., Murphy, J., and Hu, H., “Flexible-Membrane Airfoils at Low
Reynolds Numbers,” Journal of Aircraft, Vol. 45, pp. 1767-1778, September-
October, 2008.
[44]Poirel, D., Harris, Y., and Benaissa, A., “Self-sustained Aeroelastic Oscillations of a NACA0012 Airfoil at Low-to-Moderate Reynolds Numbers,” Journal of Fluids and Structures, Vol. 24, pp. 700-719, 2008.
[45]Kline, S. and McClintock, F., “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, Vol. 75, pp. 3-8, 1953.
[46]Li, H. C., Sun, W. H., Hsieh, W. C., Lai, C. C., and Miao, J. M., “Wind-Tunnel Experiments on Aerodynamic Characteristics of Low Re Airfoils for Micro Aerial Vehicles,” Proc. of the 2009 AASRC/CSCA Joint Conference, Taipei, Taiwan, December, 2009.
[47]Miao, J. M., Chen, H. K., Lai, C. C., Hsieh, W. C., and Sun, W. S., “ Optimum Design on Wing Frame of Low Reynolds number Micro-Aerial-Vehicle Based on CFD Data,” The 16th National Computational Fluid Dynamics Conference, Yilan, Taiwan, July, 2009.
[48]Hsieh, W. C ., Lai, C. C., Miao, J. M., and Tai, C. S., “ The Experimental Study of NACA4 Digital Airfoils Applied to Straight-bladed VAWTs,” The 28th Nationa Conference on Mechanical Engineering of CSME, Taichung, Taiwan, December, 2011.
[49]Hsieh, W. C., Miao, J. M., Lai, C. C., and Tai, C. S., “Experimental Study on Performance of Vertical Axis Wind Turbine with NACA 4-Digital Series of Blades, ” Advanced Materials Research, Vol. 488, pp. 1055-1061, 2012.
[50]Hsieh, W. C., Miao, J. M., Lai, C. C., and Tai, C. S., “Wind Tunnel Analysis on Performance of H-Rotor VAWTs with NACA 64xx Blades,” Advanced Materials Research, Vol. 488, pp. 1213-1218, 2012.
[51]Goel, T., Vaidyanathan, R., Haftka, R. T., Shyy, W., Queipo, N. V., and Tucker, K., “Response Surface Approximation of Pareto Optimal Front in Multi-Objective Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp. 879-893, 2007.
[52]Hsu, U. K., Tai, C. H., and Lin, C. Y., “Dynamic Simulation of a Vertical Axis Wind Turbine with NACA4412 Airfol,” Journal of Aeronaultics,Astronautics and Aviation, Series B, Vol. 41, pp. 11-16, 2009.
[53]Kuethe, A. M and Chow, C. Y., Foundations of Aerodynamics, Jonh Wiley & Sons Inc., 1986.
[54]張良吉,“升阻力耦合Savonuis垂直風機之數值研究”,屏東科技大學院車輛工程系碩士論文,屏東,2011。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top