跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柳毅駿
研究生(外文):Liou, YiChun
論文名稱:微型轉子混合器之研究
論文名稱(外文):Research of the Micro Rotary Mixer
指導教授:劉宗龍劉宗龍引用關係苗志銘苗志銘引用關係
指導教授(外文):Liu, TsungLungMiao, JrMing
口試委員:林清發楊鏡堂戴昌賢牛仰堯賴正權苗志銘劉宗龍
口試委員(外文):Lin, TsingFaYang, JingTangTai, ChangHsienNiu, YangYaoLai, ChengChyuanMiao, JrMingLiu, TsungLung
口試日期:2012-06-29
學位類別:博士
校院名稱:國防大學理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:131
中文關鍵詞:計算流力主動式微混合器轉子混合器混合機制混合效率
外文關鍵詞:CFDActive MicromixerRotor MixerMixing MechanismMixing Efficiency
相關次數:
  • 被引用被引用:1
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究之總體目標為對一新型主動式之微流體快速混合裝置進行研究,主動式微混合器的優點為流道設計相較於被動式混合器簡單,控制容易、輸入的能量可調整並影響混合效果。採用之方法為以轉子式(Wankel Type)構型為核心,利用其運轉時膣室內容積將隨時間增加而產生壓縮-擴張之變化,於膣室內形成渦流包將可強化混合之特性,使反應物與試劑能於使用量少及有限容積情形下於極短之時間於膣室內擴散混合,並因其運轉特性於特定相位時增壓,進而達到快速混合及增壓輸送之目的,同時具備混合及週期性增壓之功能。
由於微轉子式混合器由三角轉子攪拌器及混合室組成,利用進出口位置配佈使渦流於混合室內形成,轉子於混合室內進行偏心旋轉,配合八字構型外殼之設計,於混合室內造成壓縮-擴張之容積變化,初始時入口流進入時因衝擊轉子側面而產生數個大小不同之渦流,並於混合室壁面因速差產生Coanda流,進而增加混合室內之混合效率,同時在轉子運動時同時伴隨容積變化,於轉子尖端運轉至外殼之短軸時使流體加速,可於出口附近產生週期性加壓,相當適合發展為複合式微混合器,本研究就外殼形狀與進出口位置進行混合效率之研究,編寫以結構性網格為主之動態網格副程式並利用計算流體力學(CFD)工具先行模擬反應物及試劑於膣室中之擴散混合情形以及流場變化情形,再與實驗進行流場可視化之比對,以作為將來設計研發之參考基礎。在本研究中,先探討汪克爾概念之構型與一般泛用之圓形構型對混合效率之關係,後以汪克爾概念之構型為基礎,計算時導入粒子進行運算並分析流場機制,後利用幾種不同進出口位置進行混合效率二維分析,評估進出口位置對混合效率之影響,后以二維數值模擬與實驗比對流場可視化之結果進行三維模擬模型,將相關參數代入三維進行計算,建立設計概念。

The central purpose of this study is to design a new type of device which holds characteristics of rapid mixing of micro-fluid. Compared with passive micro-mixers, active micro-mixers always own the advantages of simple structure, easy operation, adjustable input condition and effective mixing efficiency, etc. The configuration of micro-rotor mixer devised in the present study is inspired from Wankel-type combustor applied in automobile industry. By means of the eccentric motion of rotating rotor, the volume of mixing chamber would exhibit compression – expansion behavior so as to produce the multi-vortex flow field to enhance mixing efficiency of the device. To that end, the convective flow structure will accelerate mixing process among reagents and reactants in a limited space periodically. Then the purpose of rapid mixing reaction can be achieved.
Generally speaking, the Wankel-type micro-mixer is composed of figure eight housing, triangular rotor and mixing chamber. By eccentric motion of cycling rotor, the chamber’s volume would change and the interaction of fluid viscous and inertial forces further generate vortex, Coanda flow and jet-flow inside it, which would create favorable condition to facilitate fluid mixing and benefit the development of active micro-mixer. The influences of port position and rotor configuration are the major research topic of the present study. To reach the goal, computational fluid dynamics (CFD) embedded with dynamic mesh technique has been employed to simulate the rotor motion in the mixer chamber. Flow visualization of numerical results would be compared with experimental ones. After validation, the numerical results of this study could serve as the basis for active micro-mixer design. The practicality of the proposed methodology is demonstrated through some case studies. In order to save the computational time and simplify the simulation procedure, two dimensional flow computations were conducted to evaluate mixing efficiency under various test conditions in the early part of the study. Reynolds number, different port positions and rotor configuration would be chosen as test factors to investigate their influence on mixing mechanism. Then, based on 2D results, three dimensional flow computations would be performed to reveal the complicated flow structure inside the chamber of micro-mixers. It has clearly shown that results of this study could lead to a better understanding of microfluidic flow and be used to optimize the design concept of active micro-mixers.

誌謝 ii
摘要 iv
ABSTRACT vi
表目錄 xi
圖目錄 xii
符號說明 xvii
1. 前言 1
1.1 研究目的 3
1.2 論文架構 5
2. 文獻回顧 7
2.1 微混合器原理與機制 7
2.2 微混合器國外研究與應用現況 10
2.3 微混合器國內研究與應用現況 13
2.4 流場可視化常用方法 16
3. 微轉子混合器原理 22
3.1 尺度律上的考量 22
3.2 轉子引擎介紹與容積變化測試 23
3.3 微型轉子混合器構型的建構 34
4. 研究方法 41
4.1 數值模擬 41
4.1.1 統御方程式 41
4.1.2 有限體積法離散法則 44
4.1.3 格點系統 46
4.1.4 動態格點技術 48
4.1.5 邊界條件設定 49
4.2 微轉子混合器製作與流場可視化實驗 50
4.2.1 微轉子混合器製作之實驗設備與材料 50
4.2.2 轉子驅動系統 61
4.2.3 量測與資料擷取系統 65
5. 結果與討論 67
5.1 數值模擬分析結果 67
5.1.1 動態格點UDF編寫及測試 67
5.1.2 研究矩陣 71
5.1.3 微型轉子混合器外殼之影響 73
5.1.4 微型轉子混合器混合機制探討 77
5.1.5 進出口位置對混合效率及流場結構之影響 84
5.1.6 二維模擬與三維模擬之比較 97
5.2 實驗結果 100
5.2.1 實驗模型運作情形 100
5.2.2 流場可視化結果 105
6. 結論及未來發展方向 108
6.1 結論 108
6.2 未來發展方向 110
參考文獻 112
論文發表 117
附錄 118
自傳 131

[1]Fujita, H., “A Decade of MEMS and its Future,” Proceeding of IEEE MEMS Symposium, pp. 1-7, 1997.
[2]Manzs, A., Graber, N., and Widmer, H. M., “Miniaturized Total Analysis System: a Novel Concept for Chemical Sensing,” Sensors and
Actuators B: Chemical, Vol. 1, Issues 1-6, pp. 244-248, 1990.
[3]Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J., “Passive Mixing
in a Three-Dimensional Serpentine Microchannel,” Journal of microelectromechanical systems, Vol. 9, No. 2, pp. 190-197, 2000.
[4]Gobby, D., Angeli, P., and Gavriilidis, A., “Mixing Characteristics of T-Type Microfluidic Mixers,” Journal of Micromechanics and
Microengineering, Vol. 11, pp.126-132, 2001.
[5]Miyake, R., Lammerink, T. S. J., Elwenspoek, M., and Fluitman, J. H. J., “Micro Mixer with Fast Diffusion,” Proceeding of MEMS’93, 6th
IEEE Int. Workshop Micro Electromechanical System, San Diego, CA, pp. 248-253, 1993.
[6]Stroock, A. D., Dertinger, S. K., Ajdari, A., Stone, H. A., and Whitesides, G. M., “Chaotic Mixer of Microchannels,” Science, Vol.
295, pp. 647-651, 2002.
[7]Kim, D. S., Lee, S. W., Kwon, T. H., and Lee, S. S., “A Barrier Embedded Chaotic Micromixer,” Journal of Micromechanics and
Microengineering, Vol. 14, pp. 798-805, 2004.
[8]Nguyen, N. T. and Wu, Z., “Micromixers: a Review,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 1-16, 2005.
[9]Löwe, H., Ehrfeld, W., and Hessel, V., “Micromixing Technology,” Fourth International Conference on Microreaction Technology, AIChE
Topical Conference Proceedings, IMRET 4, Atlanta, USA. pp. 31-47, 2000.
[10]Hessel, V., Löwe, H., and Schönfld, F., “Micromixers – a Review on Passive and Active Mixing Principles,” Journal of Chemical
Engineering Science, Vol. 60, pp. 2479-2501, 2005.
[11]Han, E. H. M., Mrityunjay, K. S., Tae, G. K., Jaap, M. J. T., and Patrick, D. A., “Passive and Active Mixing in Microfludic Device,”
Macromolecular Symposia, Vol. 279, Issue. 1, pp. 201-209, 2009.
[12]Yang, Z., Goto, H., Matsumoto, M., and Yada, T., “Micromixer Incorporated with Piezoelectrially Driven Valveless Micropump,” Proc. Of
the μTAS’98 Workshop, Banff , Canada, October 13-16, pp. 177-180, 1998.
[13]Yang, Z., Goto, H., Matsumoto, M., and Maeda, R., “Ultrasonic Micromixer for Microfluidic Systems,” MEMS 2000, The 13th Annual
International Conference, 2000.
[14]Chu, G. W., Song, Y. H., Yang, H. J., Chen, J. M., Chen, H., and Chen, J. F., “Micromixing Efficiency of a Novel Rotor-Stator
Reactor,” Chemical Engineering Journal, Vol. 128, pp. 191-196, 2007.
[15]Yang, H. J., Chu, G. W., Zhang, J. W., Shen, Z. G., and Chen, J. F., “Micromixing Efficiency in a Rotating Packed Bed: Experiments and
Simulation,” Industrial & Engineering Chemistry Research, Vol. 44, No. 20, pp. 7730-7737, 2005.
[16]Kim, Y., Lee, J., and Kwon, S., “A Novel Micro-mixer with a Quasi-active Rotor: Fabrication and Design Improvement,” Journal of
Micromechanics and Microengineering, Vol. 19, No. 10, pp. 1-9, 2009.
[17]Hou, H. H., Wang, Y. N., Chang, C. L., Yang, R. J., and Fu, L. M., “Rapid Glucose Concentration Detection Utilizing Disposable
Integrated Microfluidic Chip,” Microfluids and Nanofluids, Vol. 11, No. 4, pp. 479-481, 2011.
[18]黎康熙,“新型微混合器之設計與流場分析”,碩士論文,國立成功大學,台南,2006。
[19]許桀豪,“微混合器內依時性流量調制強化混合性能之數值研究”,碩士論文,逢甲大學,臺中,2006。
[20]張智翔、劉達生、郭龍生、陳炳煇,“利用奈米磁性流體提升混合效能之半主動式微型混合器”,中國機械工程學會第二十四屆全國學術研討會論文,桃園中壢,第5148-5153頁,2007。
[21]吳宗信、邵雲龍、黃柏誠、鄭宗杰,“微混合器之製作與研究”,奈米通訊,第12卷第1期,第21-27頁。
[22]洪誌御,“微轉子式微流體幫浦暨混合裝置”,碩士論文,國立臺灣大學,台北,第51-54頁,2008。
[23]Branch, D. W., Meyer, G. D., and Craighead, H. G., “Active Micromixer Using Surface Acoustic Wave Streaming,”US Patent:7942568B1,
U.S.A., 2011.
[24]Santiago, J. G., Oddy, M. H., and Mikkelsen, Jr. J. C., “Electrokinetic Instability Micromixer,”US Patent:7070681B2, U.S.A., 2006.
[25]Heo, P. W., Kim, D. J., Kim, J. Y., Park, S. J., and Yun, E. S., “Ultrasonic Micromixer with Radiation Perpendicular to Mixing
Interface,” US Patent Application Publication: 2005/0214933A1,U.S.A., 2005.
[26]Lee, G. B. and Yang, S. Y., “Micromixer Biochip,” US Patent Application Publication: 2010/0246315A1, U.S.A., 2010.
[27]Hessel, V., Hardt, S., Löwe, H., and Schönfeld, F., “Laminar Mixing in Different Interdigital Micromixers:I. Experimental
Characterization,” AIChE Journal, Vol. 49, issue 3, pp. 566-577, 2003.
[28]Wong, S. H., Ward, M. C. L., and Wharton, C. W., “Micro T-Mixer as a Rapid Mixing Micromixer,” Sensors Actuators B, Vol. 100, pp. 359-
379, 2004.
[29]Lee, S. W., Kim, D. S., Lee, S. S., and Kwon, T. H., “A Split and Recombination Micromixer Fabricated in a PDMS Three-Dimensional
Structure,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 1067-1072, 2006.
[30]Johnson, T. J., Ross, D., and Locascio, L. E., “Rapid Microfluidic Mixing,” Analytical Chemistry, Vol. 74, No. 1, pp. 45-51, 2001.
[31]Hardt, S., Pennemann, H., and Schönfeld, F., “Theoretical and Experimental Characterization of a Low-Reynolds Number Split-and-
Recombine Mixer,” Microfluids Nanofluids, Vol. 2, pp. 237-248, 2006.
[32]Salmon, J. B., Ajdari, A., Tabeling, P., Servant, L., Talaga, D., and Joanicot, M., “In Situ Raman Imaging of Inter-Diffusion in a
Microchannel,” Applied Physics Letters, Vol. 86, pp. 094106, 2005.
[33]http://commons.wikimedia.org/wiki/Image:Wankel_engine_diagram.png, August, 2005.
[34]Kanbara, S., Noguchi, N., Funamoto, J., Fuse, S., and Kashiyama, K., “Construction and History of Rotary Engine,” Mazda Technology
Review, Vol. 3, No. 21, pp. 3-10, 2003.
[35]Lee, J. K. and Kwon, S., “Mixing Efficiency of a Multilamination Micromixer with Consecutive Recirculation Zones,” Journal of Chemical
Engneering Science, Vol. 64, pp. 1223-1231, 2009.
[36]Hardt, S. and Schönfeld, F., “Laminar Mixing in Different Interdigital Micromixers: II, Numerical simulation,” AIChE Journal, Vol. 49,
pp. 578-584, 2003.
[37]Engler, M., Kockmann, N., Kiefer, T., and Woias, P., “Numerical and Experimental Investigations on Liquid Mixing in Static
Micromixers,” Chemical Engineering Journal, Vol. 101, pp. 315-322, 2004.
[38]Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three Dimensional Parabolic
Flows,” International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[39]Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, pp. 79-109, 1980.
[40]Van Doormal, J. P. and Raithby, G. D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows,” Numerical Heat
Transfer, Vol. 7, Issue. 2, pp. 147-163, 1984.
[41]Wang, Z. J., “Vortex Shedding and Frequency Selection in Flapping Flight,” Journal of Fluid Mechanics, Vol. 410, pp. 323-341, 2000.
[42]Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, 3rd Edition, McGraw-Hill, Inc., New York, pp. 265-315, 1997.
[43]Murayama, M., Nakahashi, K., and Matsushima, K., “Unstructured Dynamic Mesh for Large Movement and Deformation,” 40th AIAA Aerospace
Sciences Meeting, AIAA Paper 2002-0122, Jan. 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top