跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 15:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:虞品揚
研究生(外文):Yu, P. Y.
論文名稱:自潔性高分子滲透薄膜製備與應用於化生防護之研究
論文名稱(外文):Preparation and Characterization of Self-Detoxifying Permeable Membranes and Study on Chem-Bio Protective Application
指導教授:吳國輝吳國輝引用關係
指導教授(外文):Wu, K. H.
口試委員:王國平汪成斌陳邦旭楊正乾陸開泰吳國輝
口試委員(外文):Wang, G. P.Wang, C. B.Chen, P. S.Yang, C. C.Lu, K. T.Wu, K. H.
口試日期:2012-07-04
學位類別:博士
校院名稱:國防大學理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:97
中文關鍵詞:聚乙烯亞胺聚乙烯醇多金屬氧酸鹽防護材料
外文關鍵詞:PolyethyleneiminePolyvinyl alcoholPolyoxometalateSilverProtective material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究以聚乙烯亞胺(Polyethyleneimine, PEI)與聚乙烯醇(Polyvinyl Alcohol,
PVA)具有互穿網結構基材(Matrix),分別加入H5PV2Mo10O40 多金屬氧酸鹽
(Polyoxometalate, POM)及銀(Silver, Ag)製成具有無機奈米金屬粒子的高分子混
成薄膜,並進一步將混成薄膜與不織布結合,製成奈米複合材料。研究中以穿
透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)、熱重分析儀(TGA)、微差掃
描熱卡計(DSC)等探討混成薄膜、複合材料的表面型態、熱性質以及水蒸氣滲透
特性,並以大腸桿菌(E. coli)、綠膿桿菌(P. aeruginosa)、金黃色葡萄球菌(S.
aureus)、枯草桿菌(B. subtilis)以及化學模擬劑(Semi-Mustard, CEES)進行抗生物
抑菌試驗以及抗化學毒劑滲透試驗。實驗結果顯示具有無機添加物的混成薄
膜、複合材料中,同時具有捕捉化學毒劑的親核性胺基及氧化分解與抑菌效果
的奈米無機粒子,仍有合宜的水蒸氣滲透能力並可增加抗化學與生物的防護能
力,具自我除毒潔淨(Self-Detoxifying)主動防護效果,可以運用於個人防護裝備
材料上。
The selectively permeable materials for personal protective equipment (PPE)
based on polyethyleneimine/polyvinyl alcohol (PEI/PVA) hybrid membranes, which
contain polyoxometalate H5PV2Mo10O40 (POM) or silver (Ag), and nonwoven textile
were prepared in this study. PEI/PVA matrix with nucleophilic amine group could
react with chemical agent, mustard and soman. Nanoparticulates POM and Ag were
used to enhance the protection ability against chemical and biological agents. The
hybrid membranes and nanocomposite materials were examined by transmission
electron microscope (TEM), scanning electron microscope (SEM), thermal
gravimetric analyzer (TGA), differential scanning calorimeter (DSC), water vapor
transmission test, zone of inhibition test and chemical barrier property test. The
results showed hybrid membranes and nanocomposite materials act against to
simulants of chemical and biological agents while retaining the moisture vapor
transmit ability. The materials with self-detoxifying ability could be applied on the
personal protective suit.
1.緒論
1.1 前言
1.2 文獻探討
1.2.1 防護服的等級與分類
1.2.2 防護服的功能與結構
1.2.3 薄膜水蒸氣滲透原理
1.2.4 化學污染消除
1.2.5 生物污染消除
1.2.6 多金屬氧酸鹽與化生消除
1.2.7 銀與化生消除
1.2.8 自我除毒潔淨防護材料
1.3 研究動機及目的
1.4 研究架構
2. 實驗
2.1 儀器設備及實驗材料
2.1.1 儀器與設備
2.1.2 實驗材料
2.2 研究方法
2.2.1 材料製備流程
2.2.2 表面結構與特性分析
2.2.3 水蒸氣透氣測試
2.2.4 抗生物抑菌測試
2.2.4.1 定性試驗-抑菌圈
2.2.4.2 定量試驗-最小抑菌濃度、最小殺菌濃度
2.2.4.3 定量試驗-平板計數法
2.2.5 抗化學模擬劑實驗
3. 結果與討論
3.1 含POM 或Ag 高分子混成薄膜
3.1.1 表面型態分析
3.1.2 熱性質分析
3.1.3 紫外線/可見光(UV-Vis)分析
3.1.4 水蒸氣透氣測試
3.1.5 抗生物抑菌測試
3.1.6 抗化學模擬劑實驗
3.2 含POM 或Ag 高分子/不織布複合材料
3.2.1 表面型態分析
3.2.2 水蒸氣透氣測試
3.2.3 抗生物抑菌圈測試
3.2.4 抗化學模擬劑實驗
4. 結論
參考文獻
[1] Gordeyev, S. and Crawley, T., “Protective Materials for Emergency
Responders,” Security Sector Focus Report, Observatorynano, U.K., pp.
1-26, 2010.
[2] Hartley, S. M. and Axtell, H., “The Next Generation of Chemical and
Biological Protective Materials Utilizing Reactive Nnnoparticles,” 8th
International Symposium on Protection against Chemical and Biological
Warfare Agents, Gothenburg, Sweden, 2004.
[3] 林凱義,“A級防護衣檢視及氣密測試方法介紹”,勞工安全衛生簡訊,
第59期,第2-5頁,2003。
[4] 黃奕孝、闕妙如,“防護衣對於奈米微粒防護性能探討”,行政院勞工委
員會勞工安全衛生研究所委託研究報告,臺北,IOSH95-H104,第4頁,
2006。
[5] 國軍準則—陸軍—三—六—二一,化學兵專用裝備操作手冊,國防部陸
軍總司令部,2003。
[6] Willis, C., Brewer, S., Stone, C., Dennis, M., and Beadle, B., “Selectively
Permeable Membranes Based on Interpolymer Complexes,” 8th International
Symposium on Protection Against Chemical and Biological Warfare Agents,
Gothenburg, Sweden, 2004.
[7] Holly, A. and Thomas, P., “Materials Nanotechnology Program: the
Incorporation of Reactive Nanoparticles into Textiles for Protection Against
Chemical and Biological Warfare Agents,” 8th International Symposium on
Protection against Chemical and Biological Warfare Agents, Gothenburg,
Sweden, 2004.
[8] http://www.globalsecurity.org/org/news/2003/7283242.pdf(2012.4.5)
[9] http://proceedings.ndia.org/dod_cb/Tuesday_PM/Wilusz.pdf(2012.4.5)
[10] 許昭仁,“界面聚合法製備聚醯胺/聚丙烯腈複合薄膜應用於滲透蒸發分
離程序之研究”,碩士論文,中原大學,桃園,第5-6頁,2006。
[11] Bell, W. L., Scholten, T. A., and Smith, B. M., “Reactive Coatings Literature
Review,” TDA Research Inc., U.S.A., pp. 1-15, 2001.
[12] http://jpkc.hrbmu.edu.cn/weisw/index_Textbook_11_BasicMicrobiol_10.ht
ml(2012.6.5)
[13] 王廣健、劉廣卿、楊振興、徐明霞、王 磊,“Keggin 雜多酸負載型催
化劑研究及在有機合成中的應用”,有機化學,第29卷,第7期,第
1039-1047頁,2009。
[14] Xie, Y. B. and Yuan, C. W., “Photocatalytic Activity and Recycle
Application of Titanium Dioxide Sol for X-3B Photodegradation,” Journal
of Molecular Catalysis A: Chemical, Vol. 206, pp. 419-428, 2003.
[15] 朱秀華、朱敏、王煒,“多金屬氧酸鹽光催化降解水中有機污染物” ,
化學通報,第67期,第W017頁,2004。
[16] Liu, H. I. and Iglesia, E., “Effects of Support on Bifunctional Methanol
Oxidation Pathways Catalyzed by Polyoxometallate Keggin Clusters,”
Journal of Catalysis, Vol. 223, No. 1, pp. 161-169, 2004.
[17] Vazylyev, M., Dorit, S. R., Haimov, A., Maayan, G., and Neumann, R.,
“Strategies for Oxidation Catalyzed by Polyoxometalates at the Interface of
Homogeneous and Heterogeneous,” Topics in Catalysis, Vol. 34, No. 1-4,
pp. 93-99, 2005.
[18] Hill, C. L., “Progress and Challenges in Polyoxometalate-Based Catalysis
and Catalytic Materials Chemistry,” Journal of Molecular Catalysis A:
Chemical, Vol. 262, No. 1-2, pp. 2-6, 2007.
[19] Eric, D. C., “New Anti-HIV Agents and Targets,” Medicinal Research
Reviews, Vol. 22, No. 6, pp. 531-565, 2002.
[20] Pettersson, L., Andersson, I., Selling, A., and Grate, J. H., “Multicomponent
Polyanions. 46. Characterization of the Isomeric Keggin
Decamolybdodivanadophosphate Ions in Aqueous Solution by 31P and 51V
NMR,” Inorganic Chemistry, Vol. 33, pp. 982-993, 1994.
[21] Romanelli, G. P. and Autino, J. C., “Recent Application of Heteropolyacids
and Related Compounds in Heterocycles Synthesis,” Mini-Reviews in
Organic Chemistry, Vol. 6, pp. 359-366, 2009.
[22] Molnar, A., Keresszegi, C., and Torok, B., “Heteropoly Acids Immobilized
into a Silica Matrix: Characterization and Catalytic Applications,” Applied
Catalysis A: General, Vol. 189, No. 2, pp. 217-224, 1999.
[23] Angelis, A. D., Amarilii, S., Berti, D., Montanari, L., and Perego, C.,
“Alkylation of Benzene Catalysed by Supported Heteropolyacids,” Journal
of Molecular Catalysis A: Chemical, Vol. 146, No. 1-2, pp. 37, 1999.
[24] Antonaraki, S., Dimotikali, D., Hiskia, Α., and Papaconstantinou, E.,
“Photocatalytic Decomposition of Aqueous Solution of Lindane in the
Presence of PW12O40
3-,” 8th International Conference on Environmental
Science and Technology, Lemnos Island, Greece, pp. 47-54, 2003.
[25] Mylonas, A., Hiskia, A., and Papaconstantinou E., “Contribution to Water
Purification Using Polyoxometalates. Aromatic Derivatives, Chloroacetic
Acids,” Journal of Molecular Catalysis A: Chemical, Vol. 114, pp. 191-200,
1996.
[26] Mylonas A. and Papaconstantinou E., “On the Mechanism of Photocatalytic
Degradation of Chlorinated Phenols to CO2 and HCl by Polyoxometalates,”
Journal of Photochemistry and Photobiology A: Chemistry, Vol. 94, pp.
77-82, 1996.
[27] Troupis, A., Gkika, E., Triantis, T., Hiskia, A., and Papaconstantinou, E.,
“Photocatalytic Reductive Destruction of Azo Dyes by Polyoxometallates:
Naphthol Blue Black,” Journal of Photochemistry and Photobiology A:
Chemistry, Vol. 188, pp. 272-278, 2007.
[28] Kormali, P., Dimoticali, D., Tsipi, D., Hiskia, A., and Papaconstantinou, E.,
“Photolytic and Photocatalytic Decomposition of Fenitrothion by PW12O40
3- and TiO2: A Comparative Study,” Applied Catalysis B: Environmental, Vol.
48, No. 3, pp. 175-183, 2004.
[29] Kormali, P., Troupis, A., Triantis, T., Hiskia, A., and Papaconstantinou, E.,
“Photocatalysis by Polyoxometallates and TiO2: A Comparative Study,”
Catalysis Today, Vol. 124, pp. 149-155, 2007.
[30] Antonaraki, S., Androulaki, E., Dimotikalie, D., Hiskia, A., and
Papaconstantinou, E., “Photolytic Degradation of All Chlorophenols with
Polyoxometalates and H2O2,” Journal of Photochemistry and Photobiology
A: Chemistry, Vol. 148, pp. 191-197. 2002.
[31] Maldotti, A., Molinari, A., Bergamini, P., Amadelli, R., Battioni, P., and
Mansuy, D., “Photocatalytic Oxidation of Cyclohexane by
(nBu4N)4W10O32Fe(III) Prophyrins Integrated Systems,” Journal of Molecular
Catalysis A: Chemical, Vol. 113, pp. 147-157, 1996.
[32] Kim, W. B., Voitl, T., Rodriguez-Rivera, G. J., and Dumesic, J. A.,
“Powering Fuel Cells with CO via Aqueous Polyoxometalates and Gold
Catalysts,” Science, Vol. 305, No. 5688, pp. 1280-1283, 2004.
[33] Damyanova, S. and Fierro, J. L. G., “Surface Properties of
Titania-Supported 12-Molybdophosphoric Acid Hydrodesulphurization
Catalysts,” Applied Catalysis A: General, Vol. 144, No. 1-2, pp. 59-77,
1996.
[34] Pizzio, L. R., Va’zquez, P. G., Ca’ceres, C. V., and Blanco, M. N., “Mo and
W Heteropolyacid Based Catalysts Applied to the Preparation of Flavones
and Substituted Chromones by Cyclocondensation of o-Hydroxyphenyl Aryl
1,3-Propanediones,” Applied Catalysis A: General, Vol. 235, No. 1-2, pp.
233-240, 2002.
[35] Marme, F., Coudurier, G., and Jacques, C. V., “Acid-Type Catalytic
Properties of Heteropolyacid H3PW12O40 Supported on Various Porous
Silica-Based Materials,” Microporous and Mesoporous Materials, Vol. 22,
No. 1-3, pp. 151-163, 1998.
[36] Kim, W. G., Kim, M. W., Kim, J. H., and Seo, G., “Dispersion
Measurement of Heteropoly Acid Supported on KIT-1 Mesoporous
Material,” Microporous and Mesoporous Materials, Vol. 57, No. 2, pp.
113-120, 2003.
[37] Kukovecz, A., Balogi, Z., Konya, Z., Toba, M., Lentz, P., Niwa, S. I.,
Mizukami, F., Molnar, A., Nagy, J. B., and Kiriesi, I., “Synthesis,
Characterisation and Catalytic Applications of Sol-Gel Derived Silica-
Phosphotungstic Acid Composites,” Applied Catalysis A: General, Vol. 228,
No. 1-2, pp. 83-94, 2002.
[38] Damyanova, S., Gomez, L. M., Banares, M. A., and Fierro, J. L. G.,
“Thermal Behavior of 12-Molybdophosphoric Acid Supported on
Zirconium-Loaded Silica,” Chemistry of Materials, Vol. 12, No. 2, pp.
501-510, 2000.
[39] Gall, R. D., Hill, C. L., and Walker, J. E., “Selective Oxidation of Thioether
Mustard(HD) Analogs by tert-Butylhydroperoxide Catalyzed by
H5PV2Mo10O40 Supported on Porous Carbon Materials,” Journal of
Catalysis, Vol. 159, No. 2, pp. 473-479, 1996.
[40] Rhule, J. T., Hill, C. L., and Deborah, A., “Polyoxometalates in Medicine,”
Chemical Reviews, Vol. 98, pp. 327-357, 1998.
[41] Kim, G. S., Judd, D. A., Hill, C. L., and Schinazi, R. F., “Synthesis,
Characterization, and Biological Activity of a New Potent Class of Anti-HIV
Agents, the Peroxoniobium-Substituted Heteropolytungstates,” Journal of
Medicinal Chemistry, Vol. 37, No. 6, pp. 816-820, 1994.
[42] Judd, D. A., Nettles, J. H., Nevins, N., Snyder, J. P., Liotta, D. C., Tang, J.,
Ermolieff, J., Schinazi, R. F., and Hill, C. L., “Polyoxometalate HIV-1
Protease Inhibitors. A New Mode of Protease Inhibition,” Journal of the
American Chemical Society, Vol. 123, No. 5, pp. 886-897, 2001.
[43] Hill, C. L., “Introduction: Polyoxometalates-Multicomponent Molecular
Vehicles to Probe Fundamental Issues and Practical Problems,” Chemical
Reviews, Vol. 98, No. 1, pp. 1-2, 1998.
[44] Fukuda, N., Yamase, T., and Tajima, Y. “Inhibitory Effect of
Polyoxytungstates on the Production of Penicillin-Binding Proteins and
β-Lactamase Against Methicillin-Resistant Staphylococcus aureus,”
Biological and Pharmaceutical Bulletin, Vol. 22, No. 5, pp. 463-470, 1999.
[45] Inoue, M., Segawa, K., Matsunaga, S., Matsumoto, N. O., Oda, M., and
Yamase, T., “Antibacterial Activity of Highly Negative Charged
Polyoxotungstates, K27[KAs4W40O140] and K18[KSb9W21O86], and
Keggin-Structural Polyoxotungstates Against Helicobacter pylori,” Journal
of Inorganic Biochemistry, Vol. 99, No. 5, pp. 1023-1031, 2005.
[46] Hu, D. H., Shao, C., Guan, W., Su, Z. M., and Sun, J. H., “Studies on the
Interactions of Ti-Containing Polyoxometalates(POM) with SARS-CoV
3CLpro by Molecular Modeling,” Journal of Inorganic Biochemistry, Vol.
101, No. 1, pp. 89-94, 2007.
[47] Cartuyvels, E., “Chemical Studies of Anti-tumor Active Polyoxomolybdate
Complexes,” Ph.D. Dissertation, Departement Chemie, Katholieke
Universiteit, Leuven, Belgium, 2008.
[48] Gall, R. B., Hill, C. L., and Walker, J. E., “Selective Oxidation of Thioether
Mustard(HD) Analogs by tert-Butylhydroperoxide Catalyzed by
H5PV2Mo10O40 Supported on Porous Carbon Materials,” Journal of
Catalysis, Vol. 159, pp. 473-478, 1996.
[49] Xu, L., Boring, E., and Hill, C. L., “Polyoxometalate-Modified Fabrics:
New Catalytic Materials for Low-Temperature Aerobic Oxidation,” Journal
of Catalysis, Vol. 195, pp. 394-405, 2000.
[50] Okun, N. M., Anderson, T. M., and Hill, C. L., “Polyoxometalates on
Cationic Silica Highly Selective and Efficient O2/Air-based Oxidation of
2-Chloroethyl Ethyl Sulfide at Ambient Temperature,” Journal of Molecular
Catalysis A: Chemical, Vol. 197, pp. 283-290, 2003.
[51] Johnson, R. P. and Hill, C. L., “Polyoxometalate Oxidation of Chemical
Warfare Agent Simulants in Fluorinated Media,” Journal of Applied
Toxicology, Vol. 19, pp. S71-S75, 1999.
[52] Arroyo, C. M., Sankovich, J. M., Burman, D. L., Kahler, D. W., Soni, S. D.,
and Hackley Jr., B. E., “Application of NMR and EPR Spectroscopy to the
Analysis of the Reaction of Phosphovanadomolybdate Polyoxometalate
(H5PV2Mo10O40) with Chloroethyl Sulfides(Half-Sulfur Mustard and Sulfur
Mustard),” Journal of Medical Chemical, Biological and Radiological
Defense, Vol. 3, pp. 1-17, 2005.
[53] Okun, N. M., Tarr J. C., Hilleshiem, D. A., Zhang, L., Hardcastle, K. I., and
Hill, C. L., “Highly Reactive Catalysts for Aerobic Thioether Oxidation: The
Fe-Substituted Polyoxometalate/Hydrogen Dinitrate System,” Journal of
Molecular Catalysis A: Chemical, Vol. 246, pp. 11-17, 2006.
[54] Hill, C. L., Xu, L., Rhule, J. T., and Boring, E. A., “Polyoxometalate
Materials, Metal-Containing Materials, and Methods of Use Thereof,” US
Patent: 7097858, U.S.A., 2006.
[55] Mizrahi, D. M., Saphier, S., and Columbus, I., “Efficient Heterogeneous and
Environmentally Friendly Degradation of Nerve Agents on a
Tungsten-Based POM,” Journal of Hazardous Materials, Vol. 179, pp.
495-499, 2010.
[56] http://www.hgbt.com.tw/QUESTION_View.asp?gid=&qid=26(2012.4.6)
[57] 呂晃志,“揭開抗菌、防腐的神奇面紗─奈米銀(Nano Silver)”,奈米科
學網,臺中,第1-5頁,2007。
[58] Sondi, I. and Salopek-Sondi, B., “Silver Nanoparticles as Antimicrobial
Agent: A Case Study on E. coli as a Model for Gram-Negative Bacteria,”
Journal of Colloid and Interface Science, Vol. 275, No. 1, pp. 177-182,
2004.
[59] Kawahara, K., Tsuruda, K., Morishita, M., and Uchida, M., “Antibacterial
Effect of Silver-Zeolite on Oral Bacteria under Anaerobic Conditions,”
Dental Materials, Vol. 16, No. 6, pp. 452-455, 2000.
[60] Kim, K. D., Han, D. N., Lee, J. B., and Kim, H. T., “Formation and
Characterization of Ag-Deposited TiO2 Nanoparticles by Chemical
Reduction Method,” Scripta Materialia, Vol. 54, No. 2, pp. 143-146, 2006.
[61] Kumar, R. and Munstedt, H., “Silver Ion Release from Antimicrobial
Polyamide Silver Composites,” Biomaterials, Vol. 26, No. 14, pp.
2081-2088, 2005.
[62] Khanna, P. K., Singh, N., Charan, S., and Viswanath, A. K., “Synthesis of
Ag/Polyaniline Nanocomposite via an In-Situ Photo-Redox Mechanism,”
Materials Chemistry and Physics, Vol. 92, No. 1, pp. 214-219, 2005.
[63] Khanna, P. K., Singh, N., Charan, S., Subbarao, V. V. V. S., Gokhale, R.,
and Mulik, U. P., “Synthesis and Characterization of Ag/PVA
Nanocomposite by Chemical Reduction Method,” Materials Chemistry and
Physics, Vol. 93, No. 1, pp. 117-121, 2005.
[64] Li, C. Y., Wan, Y. Z.,Wang, J., Wang, Y. L., Jiang, X. Q., and Han, L. M.,
“Antibacterial Pitch-Based Activated Carbon Fiber Supporting Silver,”
Carbon, Vol. 36, No. 1-2, pp. 61-65, 1998.
[65] Wang, Y. L., Wan, Y. Z., and Dong, X. H., “Preparation and
Characterization of Antibacterial Viscose-Based Activated Carbon Fiber
Supporting Silver,” Carbon, Vol. 36, No. 11, pp. 1567-1571, 1998.
[66] Taylor, P. L., Ussher, A. L., and Burrell, R. E., “Impact of Heat on
Nanocrystalline Silver Dressings Part I: Chemical and Biological
Properties,” Biomaterials, Vol. 26, No. 35, pp. 7221-7229, 2005.
[67] Maneerung, T., Tokura, S., and Rujiravanit, R., “Impregnation of Silver
Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing,”
Carbohydrate Polymers, Vol. 72, pp. 43-51, 2008.
[68] Son, W. K., Youk, J. H., and Park, W. H., “Antimicrobial Cellulose Acetate
Nanofibers Containing Silver Nanoparticles,” Carbohydrate Polymers, Vol.
65, No. 4, pp. 430-434, 2006.
[69] Dubas, S. T., Kumlangdudsana, P., and Potiyaraj, P., “Layer-by-layer
Deposition of Antimicrobial Silver Nanoparticles on Textile Fibers,”
Colloids and Surfaces A, Vol. 289, No. 1-3, pp. 105-109, 2006.
[70] Duran, N., Marcato, P. D., De Souza, G. I. H., Alves, O. L., and Esposito, E.,
“Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on
Textile Fabrics and Their Effluent Treatment,” Journal of Biomedical
Nanotechnology, Vol. 3, No. 2, pp. 203-208, 2007.
[71] Jin, W. J., Jeon, H. J., Kim, J. H., and Youk, J. H., “A Study on the
Preparation of Poly(vinyl Alcohol) Nanofibers Containing Silver
Nanoparticles,” Synthetic Metals, Vol. 157, No. 10-12, pp. 454-459, 2007.
[72] Yang, Y. C., Baker, J. A., and Ward, J. R., “Decontamination of Chemical
Warfare Agents,” Chemical Reviews, Vol. 92, pp. 1729-1743, 1992.
[73] Prasad, G. K. and Singh, B., “Reactions of Sulphur Mustard on Impregnated
Carbons,” Journal of Hazardous Materials, Vol. 116, pp. 213-217, 2004.
[74] Ross, M. M. and Deitz, V. R., “Thermal Desorption, Tandem Mass
Spectrometry of Whetlerite Adsorbents,” Carbon, Vol. 28, No. 1, pp.
229–231, 1990.
[75] Lodewyckx, P., “Adsorption of Chemical Warfare Agents,” Interface
Science and Technology, Vol. 7, pp. 475-528, 2006.
[76] http://www.ntcresearch.org/pdf-rpts/AnRp04/C02-CD06-A4.pdf(2009.6.5)
[77] http://www.ntcresearch.org/pdf-rpts/AnRp06/C05-CR01-A6.pdf(2009.6.5)
[78] Ramaseshan1, R., Sundarrajan1, S., Liu, Y., Barhate, R. S., Lala, N. L., and
Ramakrishna, S., “Functionalized Polymer Nanofibre Membranes for
Protection from Chemical Warfare Stimulants,” Nanotechnology, Vol. 17, pp.
2947-2953, 2006.
[79] Ryu, S. Y., Choi, W. H., Ahn, C. Y., and Kwak, S. Y., “Ag-TiO2 Coated
Polyurethane Composite Nanofiber Web for Application in the Protection
Against Chemical and Biological Warfare Agent,” NSTI-Nanotech 2010, Vol.
1, pp. 822-825, 2010.
[80] Sundarrajan, S., Chandrasekaran, A. R., and Ramakrishna, S., “An Update
on Nanomaterials-Based Textiles for Protection and Decontamination,”
Journal of the American Ceramic Society, Vol. 93, pp. 3955-3975, 2010.
[81] Amitai, G., Murata, H., Andersen, J. D., Koepsel, R. R., and Russell, A. J.,
“Decontamination of Chemical and Biological Warfare Agents with a Single
Multi-Functional Material,” Biomaterials, Vol. 31, pp. 4417-4425, 2010.
[82] http://www.soarnol.com/eng/solution/solution050723.html(2009.8.16)
[83] Zhang, Y., Wang, Z., and Wang, S. C., “Effects of Polymeric Membrane
Structure on Gas Transport,” Polymer Materials Science and Engineering,
Vol. 20, No.4, 2004.
[84] Jang, J. and Lee, D. K., “Oxygen Barrier Properties of Biaxially Oriented
Polypropylene/Polyvinyl Alcohol Blend Films,” Polymer, Vol. 45, pp.
1599-1607, 2004.
[85] Yen, J. T., Yao, W. H., Du, Q., and Chen, C., “Blending and Barrier
Properties of Blends of Modified Polyamide and Ethylene Vinyl Alcohol
Copolymer,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 43,
pp.511-521, 2005.
[86] 呂玉彬、劉全校、許文才、李金麗,“國內PVA薄膜材料改性研究進展”,
北京印刷學院學報,第19卷,第4期,第1-4頁,2011。
[87] 張麗卿、李波、蔣剛、馮建鴻、黃勇,“碳氫燒蝕層的厚度對聚乙烯醇
薄膜阻氣性能的影響”,強鐳射與電子束,第17卷,第63-66頁,2005。
[88] Seiler, M., “Hyperbranched Polymers: Phase Behavior and New
Applications in the Field of Chemical Engineering,” Fluid Phase Equilibria,
Vol. 241, pp. 155-174, 2006.
[89] Yang, Y. C., Baker, J. A., and Ward, J. R., “Decontamination of Chemical
Warfare Agents,” Chemical Reviews, Vol. 92, pp. 1729-1743, 1992.
[90] Wanger, G. W. and Bartarm, P. W., “Reactions of the Nerve Agent Stimulant
Diisopropyl Fluorophosphates With Self-Decontaminating Adsorbents. A 31P
MAS NMR Study,” J. Molecular Catalysis A: Chemical, Vol. 144, pp.
419-424, 1999.
[91] Guo, Q., “Miscible Blend Containing a Crystallizable Component:
Poly(vinyl Alcohol)/Poly(ethyleneimine),” Macromolecular Rapid
Communications, Vol. 16, pp. 785-791, 1995.
[92] Maradur, S. P. and Gokavi, G. S., “Poly(vinyl Alcohol) Supported
12-Tungstocobaltate(II) as a Novel Heterogeneous Catalyst for Oxidation of
Benzyl Alcohols,” Bulletin of the Catalysis Society of India, Vol. 6, pp.
42-49, 2007.
[93] Ma, H., Peng, J., Chen, Y., Feng, Y., and Wang, E., “Photoluminescent
Multilayer Film Based on Polyoxometalate and
tris(2,2-bipyridine)ruthenium,” Journal of Solid State Chemistry, Vol. 177,
pp. 3333-3338, 2004.
[94] Tian, C. G., Wang, E. B., Kang, Z. H., Mao, B. D., Zhang, C., Lan, Y., Wang,
C. L., and Song, Y. L., “Synthesis of Ag-Coated Polystyrene Colloids by an
Improved Surface Seeding and Shell Growth Technique,” Journal of Solid
State Chemistry, Vol. 179, pp. 3270-3276, 2006.
[95] Yang, F. C., Wu, K. H., Liu, M. J., Lin, W. P. and Hu, M. K., “Evaluation of
the Antibacterial Efficacy of Bamboo Charcoal/Silver Biological Protective
Material,” Materials Chemistry and Physics, Vol. 113, No.1, pp. 474-479,
2009.
[96] Yang, G. C., Pan, Y., Gao, F. M., Gong, J., Cui, X. J., Shao, C. G., Guo, Y. H.,
and Qu, L. U., “A Novel Photochromic PVA Fiber Aggregates Contained
H4SiW12O40,” Materials Letters, Vol. 59, pp. 450-455, 2005.
[97] Gautam, A., Singh, G. P., and Ram, S., “A Simple Polyol Synthesis of
Silver Metal Nanopowder of Uniform Particles,” Synthetic Metals, Vol. 157,
pp. 5-10, 2007.
[98] Xia, X. P., Cai, S. Z., and Xie, C. S., “Preparation, Structure and Thermal
Stability of Cu/LDPE Nanocomposites,” Materials Chemistry and Physics,
Vol. 95, pp. 122-129, 2006.
[99] 周更生、李賢學、高振裕、盧育杰,“奈米銀”,科學發展專題報導-功能
性粉末,第32-39頁,408期,2006年。
[100] Jin, W. J., Jeon, H. J., Kim, J. H., and Youk, J. H., “A Study on the
Preparation of Poly(vinyl Alcohol) Nanofibers Containing Silver
Nanoparticles,” Synthetic Metals, Vol. 157, pp. 454–459, 2007.
[101] Inoue, M., Segawa, K., Matsunaga, S., Matsumoto, N., Oda, M., and
Yamase, T., “Antibacterial Activity of Highly Negative Charged
Polyoxotungstates, K27[KAs4W40O140] and K18[KSb9W21O86], and
Keggin-Structural Polyoxotungstates against Helicobacter pylori,” Journal
of Inorganic Biochemistry, Vol. 99, No. 5, pp. 1023-1031, 2005.
[102] Bae, E., Lee, J. W., Hwang, B. H., Yeo, J., Yoon, J., Cha, H. J., and Choi, W.,
“Photocatalytic Bacterial Inactivation by Polyoxometalates,” Chemosphere,
Vol. 72, pp. 174-181, 2008.
[103] Kim, K. D., Han, D. N., Lee, J. B., and Kim, H. T., “Formation and
Characterization of Ag-Deposited TiO2 Nanoparticles by Chemical
Reduction Method,” Scripta Materialia, Vol. 54, pp. 143-146, 2006.
[104] Kawahara, K., Tsuruda, K., Morishita, M., and Uchida, M., “Antibacterial
Effect of Silver-Zeolite on Oral Bacteria under an Aerobic Conditions,”
Dental Materials, Vol. 16, pp. 452-455, 2000.
[105] Park, S. J. and Jang, Y. S., “Preparation and Characterization of Activated
Carbon Fibers Supported with Silver Metal for Antibacterial Behavior,”
Journal of Colloid and Interface Science, Vol. 261, pp. 238-243, 2003.
[106] Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., and Kim, J. O., “A Mechanistic
Study of the Antibacterial Effect of Silver Ions on Escherichia coli and
Staphylococcus aureus,” Journal of Biomedical Materials Research, Vol. 52,
No. 4, pp. 662-668, 2000.
[107] Li, P., Li, J., Wu, C. Z., Wu, Q. S., and Li, J., “Synergistic Antibacterial
Effects of β-Lactam Antibiotic Combined with Silver Nanoparticles,”
Nanotechnology, Vol. 16, No. 9, pp. 1912-1917, 2005.
[108] 施承坤,“簡易型化生防護服之材質研發”,碩士論文,國防大學理工學
院,桃園,第20-21頁,2006。
[109] Gibson, H. S., “New Materials for the Integration of Protective Membranes
and Fabrics for CB Destruction Protection,” CBD S&T Conference, Dallas,
TX, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top