跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡鎮吉
研究生(外文):Tsai, Chenchi
論文名稱:臨床抗碳青黴烯類抗生素之綠膿桿菌表現各種不同的oprD基因突變
論文名稱(外文):Diversity of Mutations of oprD in Clinical Isolates of Carbapenem-resistant Pseudomonas aeruginosa
指導教授:曾銘仁
指導教授(外文):Tseng, Minjen
口試委員:許昺慕朱紀實
口試委員(外文):Hsu, BingmuChu, Chishih
口試日期:2012-07-06
學位類別:碩士
校院名稱:國立中正大學
系所名稱:分子生物研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:105
中文關鍵詞:綠膿桿菌碳青黴烯類抗生素
外文關鍵詞:Pseudomonas aeruginosaCarbapenemOprD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:921
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
綠膿桿菌(Pseudomonas aeruginosa)屬於革蘭氏陰性桿菌。臨床上,這個細菌屬於伺機性病源菌,主要感染免疫缺失或重症的病人。這個病原體可以因為本身構造或外來機轉,使其對多種抗生素產生抗藥性。因此,臨床上治療這種細菌所產生的感染症是一大考驗。
碳青黴烯類(Carbapenem)抗生素屬於一種廣效型的乙內醯胺(-lactam)抗生素。這類抗生素對抗綠膿桿菌,有不錯的效果。然而最近幾年出現抗碳青黴烯類抗生素的綠膿桿菌,而且這種抗藥性的綠膿桿菌在臨床上的威脅越來越高。目前研究顯示,這種抗藥的菌株可能是由於細胞膜上的OprD porin出現突變或膜上的Efflux pump激活所導致。
本研究,主要從2010年1月到2010年12月,於南台灣的一個區域教學醫院,收集21株臨床上抗碳青黴烯類抗生素的綠膿桿菌。首先,以PCR得到臨床菌株的16S rDNA片段,加以定序,確定這些臨床的菌株皆為綠膿桿菌。之後從中選取三株臨床抗藥的綠膿桿菌和標準菌株ATCC27853,將其細胞膜蛋白萃取出來,作蛋白質電泳並和標準菌株作比對。蛋白質體分析結果發現這三株選取的抗藥菌株的細胞外膜上,皆缺少OprD porin這個膜蛋白。以PCR得到這21株臨床抗碳青黴烯類抗生素綠膿桿菌的oprD基因片段,轉殖至質體加以定序,結果發現有各式各樣的突變方式,包括點突變導致提早結束轉譯(premature termination of translation),或嵌入或缺失幾個核苷酸導致轉譯移碼(frameshift)而造成提早結束轉譯或繼續轉譯產生比原來更長的肽鏈,或缺失一大段基因造成提早結束轉譯,或於基因序列中插入一段的嵌入序列(insertion element)。總結來說,在臨床抗碳青黴烯類抗生素的綠膿桿菌中,細胞外膜OprD porin的消失源自於各種不同的oprD基因突變。
Pseudomonas aeruginosa, a Gram-negative bacterium, is an opportunistic pathogen for immune-compromised patients. The organism possesses both an intrinsic and acquired resistance to many antibiotics and treatment of infection by this organism is difficult.
Carbapenems have a high potency against a broad spectrum of organisms and are one of the most active groups of -lactam antibiotics against P. aeruginosa. However, the threat of carbapenem-resistant Pseudomonas aeruginosa (CRPA) has been grown in recent years. Recent studies showed the resistance to carbapenem may be attributed to inactivation of OprD porin or overexpression of efflux pumps at the membrane. In this thesis, a total of 21 strains of CRPA were isolated from a regional hospital in south Taiwan from Jan. 2010 to Dec. 2010. The DNA fragments of 16S rDNA of all strains were obtained and sequenced to confirm they indeed are P. aeruginosa. The bacterial membrane fractions of three strains of CRPA and standard strand ATCC27853 were extracted and separated by SDS-PAGE. The proteomic analysis showed they all lacked the outer membrane OprD porins as compared to the standard strain. The DNA fragments of oprD genes of all CRPA strains were obtained by colony PCR, cloned and sequenced. The sequencing data showed diverse mutations in these CRPA strains. These mutations include: 1) premature termination of translation caused by point mutation, insertion of redundant nucleotides, and deletion of nucleotides; 2) insertion of redundant nucleotides to extend the translation at the stop codon; or 3) insertion of a long insertion element. In conclusion, variable mutations of oprD contributed to the disappearance of OprD porin in the outer membrane and resulted in the development of carbapenem resistance in P. aeruginosa.

謝辭 1
中文摘要 2
Abstract 3
目錄 4
壹、序論 7
綠膿桿菌(Pseudomonas aeruginosa) 7
碳青黴烯類抗生素(Carbapenem) 8
抗碳青黴烯類抗生素的綠膿桿菌(carbapenem-resistant Pseudomonas aeruginosa, CRPA) 8
細胞外膜上的OprD porin 9
研究目的 10
實驗架構和流程 12
貳、材料和方法 13
研究材料 13
綠膿桿菌對碳青黴烯抗生素的藥敏測試 13
綠膿桿菌16S rDNA基因定序方法 14
綠膿桿菌之限制性片段長度多樣性(Restriction Fragment Length Polymorphism, RFLP)分析 15
綠膿桿菌膜蛋白之萃取 16
SDS膠體電泳法 (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis) 17
綠膿桿菌oprD基因定序方法 17
參、研究結果 19
抗碳青黴烯類抗生素綠膿桿菌的抗藥性和種源的相關性 19
抗碳青黴烯類抗生素綠膿桿菌缺乏OprD porin 19
PCR和定序分析缺少細胞外膜OprD porin的抗碳青黴烯類抗生素綠膿桿菌的oprD 20
oprD突變形式和抗藥性多樣性的相關性 21
病人臨床資料,菌種種源相關性,oprD突變形式和其他抗綠膿桿菌抗藥性的相關性 23
肆、結果討論 25
伍、結論 30
陸、參考文獻 31
表 38
表一、SDS-PAGE製備時,Resolving gel和stacking gel的配方 38
表二、P02,P06,P15和ATCC27853之各碳青黴烯類抗生素的最小抑菌濃度和臨床解讀 39
表三、P02、P06和P15的oprD突變形式 40
表四、P17的oprD突變形式 41
表五、P17對三種抗碳青黴烯類抗生素的最小抑菌濃度和臨床解讀 42
表六、P01,P03,P05,P09,P10,P21,P22的oprD突變形式 43
表七、P01,P03,P05,P09,P10,P21,P22對三種抗碳青黴烯類抗生素的最小抑菌濃度和臨床解讀 44
表八、P02,P06,P07,P11,P12,P15,P16,P18,P19,P23,P24,P25的oprD突變形式 45
表九、P02,P06,P07,P11,P12,P15,P16,P18,P19,P23,P24,P25對三種抗碳青黴烯類抗生素的最小抑菌濃度和臨床解讀 46
表十、P20對三種抗碳青黴烯類抗生素的最小抑菌濃度和臨床解讀 47
圖 48
圖一、綠膿桿菌的外觀 48
圖二、四種乙內醯胺類抗生素的化學結構式 49
圖三、乙內醯胺類抗生素對轉肽基酶的作用。 50
圖四、三種碳青黴烯類抗生素的化學結構式。 51
圖五、乙內醯胺水解酶的分類。 52
圖六、OprD porin圖解示意圖。 53
圖七、E-test圖示。 54
圖八、16s rDNA基因定序流程圖 55
圖九、16S rDNA接到yT&A vector的示意圖和各限制酶的切點位置 56
圖十、膜蛋白製備流程 57
圖十一、oprD接到yT&A vector的示意圖和各限制酶的切點位置 58
圖十二、臨床抗碳青黴烯類抗生素的綠膿桿菌的種源分析圖。 59
圖十三、ATCC27853、P02、P06和P15的膜蛋白電泳圖。 60
圖十四、ATCC27853、P02、P06和P15 oprD 基因的PCR product電泳圖。 61
圖十五、P17 oprD 基因的PCR product電泳圖。 62
圖十六、P01,P03,P05,P09,P10,P21,P22 oprD 基因的PCR product電泳圖。 63
圖十七、P02,P06,P07,P11,P12,P15,P16,P18,P19,P23,P24和P25 oprD 基因的PCR product電泳圖。 64
圖十八、針對P20的oprD 基因的PCR product電泳圖。 65
圖十九、P20的oprD基因示意圖。 66
圖二十、臨床抗碳青黴烯類抗生素的綠膿桿菌的種源分析圖和臨床相關資料 67
圖二十一、臨床抗碳青黴烯類抗生素的綠膿桿菌的種源分析圖和所有抗綠膿桿菌抗生素的最小抑菌濃度比對 68
圖二十二、oprD突變點圖 69
柒、附錄 70
一、ATCC27853和臨床抗碳青黴烯類抗生素的綠膿桿菌的藥敏試驗結果和臨床菌株檢體種類 70
二、ATCC27853和所有臨床抗碳青黴烯類抗生素的綠膿桿菌的oprD 基因PCR產物的電泳結果 71
三、臨床抗碳青黴烯類抗生素綠膿桿菌的oprD基因上主要的突變點和突變形式 72
四、臨床抗碳青黴烯類抗生素綠膿桿菌和ATCC27853 OprD porin上胺基酸的差異 73
五、抗碳青黴烯類抗生素綠膿桿菌對其他抗綠膿桿菌之藥敏試驗結果 75
六、病人之臨床資料 76
七、臨床抗碳青黴烯類抗生素綠膿桿菌和ATCC27853和PAO1其預測OprD porin的胺基酸序列的排列 78
八、臨床抗碳青黴烯類抗生素綠膿桿菌和ATCC27853和PAO1其oprD的基因序列的排列 81
九、P20綠膿桿菌菌株的 oprD 基因及胺基酸序列和基因示意圖 96
十、臨床抗碳青黴烯類抗生素綠膿桿菌之16S rDNA的基因序列 99

Angus BL & Hancock RE (1983) Outer membrane porin proteins F, P, and D1 of Pseudomonas aeruginosa and PhoE of Escherichia coli: chemical cross-linking to reveal native oligomers. J Bacteriol. 155:1042-51.

Albertini AM, Hofer M, Calos MP & Miller JH (1982) On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell. 29:319-28.

Breidenstein EB, de la Fuente-Núñez C & Hancock RE (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 19:419-26.

Bogiel T, Mikucka A, Skalski T & Gospodarek E (2010) Occurrence and susceptibility to antibiotics of carbapenem-resistant Pseudomonas aeruginosa strains between 1998 and 2009. Med Dosw Mikrobiol. 62:221-9.

Behera B, Das A, Mathur P & Kapil A (2008) High prevalence of carbapenem resistant Pseudomonas aeruginosa at a tertiary care centre of north India. Are we under-reporting? Indian J Med Res. 128:324-5.

Biswas S, Mohammad MM, Patel DR, Movileanu L & van den Berg B (2007) Structural insight into OprD substrate specificity. Nat Struct Mol Biol. 14:1108-9.

Beckman KB & Ames BN (1997) Oxidative decay of DNA. J Biol Chem. 272:19633-6.

Mahon CR & Manuselis G (2000) Nonfermenting Gram-negative Bacilli and miscellaneous Gram-negative rods. Textbook of Diagnostic Microbiology, 2nd edition, 2000, Saunders, 547-549.

Cox B & Game J (1974) Repair systems in Saccharomyces. Mutat Res. 26:257-64.

Cirz RT, O'Neill BM, Hammond JA, Head SR & Romesberg FE (2006) Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol. 188:7101-10.

Dejsirilert S, Suankratay C, Trakulsomboon S, Thongmali O, Sawanpanyalert P, Aswapokee N & Tantisiriwat W (2009) National Antimicrobial Resistance Surveillance, Thailand (NARST) data among clinical isolates of Pseudomonas aeruginosa in Thailand from 2000 to 2005. J Med Assoc Thai. 92 Suppl 4:S68-75.

Davies TA, Shang W, Bush K & Flamm RK (2008) Affinity of doripenem and comparators to penicillin-binding proteins in Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 52:1510-2.

El Garch F, Bogaerts P, Bebrone C, Galleni M & Glupczynski Y (2011) OXA-198, an acquired carbapenem-hydrolyzing class D -lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 55:4828-33.

El Amin N, Giske CG, Jalal S, Keijser B, Kronvall G & Wretlind B (2005) Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS. 113:187-96.

Evans JC & Segal H (2007) A novel insertion sequence, ISPA26, in oprD of Pseudomonas aeruginosa is associated with carbapenem resistance. Antimicrob Agents Chemother. 51:3776-7.

Farra A, Islam S, Strålfors A, Sörberg M & Wretlind B (2008) Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. Int J Antimicrob Agents. 31:427-33.

Fritsche TR, Sader HS, Toleman MA, Walsh TR & Jones RN (2005) Emerging metallo--lactamase-mediated resistances: a summary report from the worldwide SENTRY antimicrobial surveillance program. Clin Infect Dis. 41 Suppl 4:S276-8.

Fukuoka T, Masuda N, Takenouchi T, Sekine N, Iijima M & Ohya S (1991) Increase in susceptibility of Pseudomonas aeruginosa to carbapenem antibiotics in low-amino-acid media. Antimicrob Agents Chemother. 35:529-32.

Fukuoka T, Ohya S, Narita T, Katsuta M, Iijima M, Masuda N, Yasuda H, Trias J & Nikaido H (1993) Activity of the carbapenem panipenem and role of the OprD (D2) protein in its diffusion through the Pseudomonas aeruginosa outer membrane. Antimicrob Agents Chemother. 37(2):322-7.

Farabaugh PJ, Schmeissner U, Hofer M & Miller JH (1978) Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. J Mol Biol. 126:847-57.

Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol. 42:373-97.

Friedberg EC (1995) Out of the shadows and into the light: the emergence of DNA repair. Trends Biochem Sci. 20:381.

Friedberg EC, Bardwell AJ, Bardwell L, Feaver WJ, Kornberg RD, Svejstrup JQ, Tomkinson AE & Wang Z (1995) Nucleotide excision repair in the yeast Saccharomyces cerevisiae: its relationship to specialized mitotic recombination and RNA polymerase II basal transcription. Philos Trans R Soc Lond B Biol Sci. 347:63-8.

Friedberg EC, Wagner R & Radman M (2002) Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science. 296:1627-30.

García-Lozano T, Aznar E, Lorente P & Gimeno C (2011) Molecular characterization of carbapenemases in Pseudomonas aeruginosa infection. Clinical study in three oncological patients. Med Clin (Barc). 137:709-10.

Gutiérrez O, Juan C, Cercenado E, Navarro F, Bouza E, Coll P, Pérez JL & Oliver A (2007) Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother. 51:4329-35.

Giske CG, Libisch B, Colinon C, Scoulica E, Pagani L, Füzi M, Kronvall G & Rossolini GM (2006) Establishing clonal relationships between VIM-1-like metallo-- lactamase-producing Pseudomonas aeruginosa strains from four European countries by multilocus sequence typing. J Clin Microbiol. 44:4309-15.

Goldberg AL & St John AC (1976) Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 45:747-803.

Hsia C-W, Shui H-A, Wang C-Y, Yu H-M, Ho M-Y, Cheng K-T & Tseng M-J (2011) Proteomics demonstration that histone H4 is a colchicine-induced retro-modulator of growth and alkaline phosphatase activity in hair follicle dermal papilla culture. J Proteomics. 74:805-816.

Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA & Fridkin SK (2008) National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol. 29:996-1011.

Huang H, Jeanteur D, Pattus F & Hancock RE (1995) Membrane topology and site-specific mutagenesis of Pseudomonas aeruginosa porin OprD. Mol Microbiol. 16:931-41.

Huang H & Hancock RE (1996) The role of specific surface loop regions in determining the function of the imipenem-specific pore protein OprD of Pseudomonas aeruginosa. J Bacteriol. 178:3085-90.

Ingold AJ, Castro M, Nabón A, Borthagaray G & Márquez C (2011) VIM-2 metallo--lactamase gen detection in a class 1 integron associated to bla(CTX-M-2) in a Pseudomonas aeruginosa clinical isolate in Uruguay: first communication. Rev Argent Microbiol. 43:198-202.

Köhler T, Michea-Hamzehpour M, Epp SF & Pechere JC (1999) Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother. 43:424-7.

Köhler T, Pechère JC & Plésiat P (1999) Bacterial antibiotic efflux systems of medical importance. Cell Mol Life Sci. 56:771-8.

Kiser TH, Obritsch MD, Jung R, MacLaren R & Fish DN (2010) Efflux pump contribution to multidrug resistance in clinical isolates of Pseudomonas aeruginosa. Pharmacotherapy. 30:632-8.

Kolayli F, Karadenizli A, Savli H, Ergen K, Hatirnaz O, Balikci E, Budak F & Vahaboglu H (2004) Effect of carbapenems on the transcriptional expression of the oprD, oprM and oprN genes in Pseudomonas aeruginosa. J Med Microbiol. 53:915-20.

Kresse AU, Blöcker H & Römling U (2006) ISPa20 advances the individual evolution of Pseudomonas aeruginosa clone C subclone C13 strains isolated from cystic fibrosis patients by insertional mutagenesis and genomic rearrangements. Arch Microbiol. 185:245-54.

Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA & Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 130:797-810.

Lister PD, Wolter DJ & Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 22:582-610.

Livermore DM (2002) The impact of carbapenemases on antimicrobial development and therapy. Curr Opin Investig Drugs. 3:218-24.

Nakae T (1976) Identification of the outer membrane protein of E. coli that produces transmembrane channels in reconstituted vesicle membranes. Biochem Biophys Res Commun. 71:877-84.

Naenna P, Noisumdaeng P, Pongpech P & Tribuddharat C (2010) Detection of outer membrane porin protein, an imipenem influx channel, in Pseudomonas aeruginosa clinical isolates. Southeast Asian J Trop Med Public Health. 41:614-24.

Neeley WL, Delaney S, Alekseyev YO, Jarosz DF, Delaney JC, Walker GC & Essigmann JM (2007) DNA polymerase V allows bypass of toxic guanine oxidation products in vivo. J Biol Chem. 282:12741-8.


Ochs MM, McCusker MP, Bains M & Hancock RE (1999) Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother. 43:1085-90.

Ochs MM, Bains M & Hancock RE (2000) Role of putative loops 2 and 3 in imipenem passage through the specific porin OprD of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 44:1983-5.

Otter JA, Yezli S & French GL (2011) The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infect Control Hosp Epidemiol. 32:687-99.

Ocampo-Sosa AA, Cabot G, Rodríguez C, Roman E, Tubau F, Macia MD, Moya B, Zamorano L, Suárez C, Peña C, Domínguez MA, Moncalián G, Oliver A, Martínez- Martínez L & Spanish Network for Research in Infectious Diseases (REIPI) (2012) Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother. 56:1703-13.

Ochman H, Lawrence JG & Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature. 405:299-304.

Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang Z & Woodgate R (2001) The Y-family of DNA polymerases. Mol Cell. 8:7-8.

Pirnay JP, De Vos D, Cochez C, Bilocq F, Vanderkelen A, Zizi M, Ghysels B & Cornelis P (2002) Pseudomonas aeruginosa displays an epidemic population structure. Environ Microbiol. 4:898-911.

Pirnay JP, De Vos D, Mossialos D, Vanderkelen A, Cornelis P & Zizi M (2002) Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. Environ Microbiol. 4:872-82.

Quale J, Bratu S, Gupta J & Landman D (2006) Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 50:1633-41.

Riera E, Cabot G, Mulet X, García-Castillo M, del Campo R, Juan C, Cantón R & Oliver A (2011) Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem. J Antimicrob Chemother. 66:2022-7.

Ruiz-Martínez L, López-Jiménez L, d'Ostuni V, Fusté E, Vinuesa T & Viñas M (2011) A mechanism of carbapenem resistance due to a new insertion element (ISPa133) in Pseudomonas aeruginosa. Int Microbiol. 14:51-8.

Smith DW, Yee TW, Baird C & Krishnapillai V (1991) Pseudomonas replication origins: a paradigm for bacterial origins? Mol Microbiol. 5:2581-7.

Sanbongi Y, Shimizu A, Suzuki T, Nagaso H, Ida T, Maebashi K & Gotoh N (2009) Classification of OprD sequence and correlation with antimicrobial activity of carbapenem agents in Pseudomonas aeruginosa clinical isolates collected in Japan. Microbiol Immunol. 53:361-7.

Streisinger G, Okada Y, Emrich J, Newton J, Tsugita A, Terzaghi E & Inouye M (1966) Frameshift mutations and the genetic code. Cold Spring Harb Symp Quant Biol. 31:77-84.

Sanders LH, Devadoss B, Raja GV, O'Connor J, Su S, Wozniak DJ, Hassett DJ, Berdis AJ & Sutton MD (2011) Epistatic roles for Pseudomonas aeruginosa MutS and DinB (DNA Pol IV) in coping with reactive oxygen species-induced DNA damage. PLoS One. 6:e18824.

Sanders LH, Rockel A, Lu H, Wozniak DJ & Sutton MD (2006) Role of Pseudomonas aeruginosa dinB-encoded DNA polymerase IV in mutagenesis. J Bacteriol. 188:8573-85.

Trias J & Nikaido H (1990) Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 34:52-7.

Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH & Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 33:2233-9.

Tamber PS & Vincent JL (2001) The World Trade Center attack. Lessons for all aspects of health care. Crit Care. 5:299-300.

Vitkauskienė A, Skrodenienė E, Dambrauskienė A, Bakšytė G, Macas A & Sakalauskas R (2011) Characteristics of carbapenem-resistant Pseudomonas aeruginosa strains in patients with ventilator-associated pneumonia in intensive care units. Medicina (Kaunas). 47(12):652-6.

Yoshimura F & Nikaido H (1982) Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol. 152:636-42.

Yoshihara E & Nakae T (1989) Identification of porins in the outer membrane of Pseudomonas aeruginosa that form small diffusion pores. J Biol Chem. 264:6297-301.

Yoneyama H & Nakae T (1991) Cloning of the protein D2 gene of Pseudomonas aeruginosa and its functional expression in the imipenem-resistant host. FEBS Lett. 283:177-9.

Yoneyama H & Nakae T (1993) Mechanism of efficient elimination of protein D2 in outer membrane of imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 37:2385-90.

Wolter DJ, Hanson ND & Lister PD (2004) Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol Lett. 236:137-43.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊