跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 11:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯欣妤
研究生(外文):Ke Shinyu
論文名稱:重建人體鞘脂代謝網路並探討酵素調控最適化
論文名稱(外文):Reconstruction of the human sphingolipid metabolic network and optimization of enzyme regulation
指導教授:王逢盛
指導教授(外文):Wang Fengsheng
口試委員:周宜雄錢玉樹黃奇英
口試委員(外文):Chou YishyongChien YushuHuang Chiying F.
口試日期:2012-06-28
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:119
中文關鍵詞:神經鞘脂代謝網路
外文關鍵詞:SphingolipidMetabolic network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
神經鞘脂類(Sphingolipid)廣泛存於全身細胞中,不只可組成細胞膜結構,亦可傳遞訊號,調控細胞存亡。其代謝途徑中間產物神經醯胺(Ceramide)與鞘氨醇-1-磷酸(Sphingosine 1-phosphate)更分別被稱為抑癌脂質及促癌脂質,目前市面上的化療藥物,如:唐黴素注射劑(Daunorubicin)、醫百幸注射劑(Etoposide)等,皆被證實促使神經醯胺生成,進而使細胞凋亡。
本研究综合文獻及資料庫生物信息,重建整合人體鞘脂代謝途徑,使網路圖譜涵蓋脂肪酸代謝、磷脂代謝及醣解途徑。並運用系統生物學概念,使用軟體工具確認此代謝網路為滿秩矩陣系統,在最大Sphingomyelin phosphodiesterase及最小Sphinganine kinase催化速率此多目標函數情況下,最能夠累積神經醯胺並同時最小生成鞘氨醇-1-磷酸。並於此多目標情況下調控酵素活性,模擬生物體受干擾狀態下的最適通量分布,獲得結果Serine palmitoyltransferase、3-dehydrosphinganine reductase及Hexokinase此三酵素為此系統必須酵素,Ceramide synthase酵素為最具影響神經醯胺生成量的酵素,此模擬結果相符於化療藥物所激活酵素,藉此達到醫療效果。

Sphingolipids are widely existed in the cells, which are not only the composition of cell membrane structure but also transmit signals regulating cell survival. Its metabolic pathway intermediates Ceramide and Sphingosine 1-phosphate are known as Tumor suppressor lipid and Cancer-promoting lipid respectively. Currently chemotherapy drugs, such as: Daunorubicin and Etoposide are known to promote Ceramide generation, thereby enabling apoptosis.
In this research, we integrate literature and biological databases information into the human sphingolipid metabolic pathway, which include fatty acid metabolism, phospholipid metabolism and the glycolytic pathway. We adopt the system biology concept to confirm this system for the full rank matrix, and then we regulate enzyme activity in the case of Maximum Sphingomyelin phosphodiesterase and minimum Sphinganine kinase catalytic rate to learn about organisms' response and meaning. Finally, we conclude that Serine palmitoyltransferase, 3-dehydrosphinganine reductase and Hexokinase are indispensable enzymes in this system, Ceramide synthase is the main Ceramide synthesizer enzyme, consistent with the chemotherapy drug experiment results.

摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 X

第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究動機 5
1.4 組織章節 6

第二章 代謝網路建立與分析 7
2.1 生物資料庫簡介 7
2.1-1 Kyoto Encyclopedia of Genes and Genomes (KEGG) 7
2.1-2 BioPath Database 8
2.1-3 BRaunschweig ENzyme DAtabase (BRENDA) 8
2.2 網路分析-使用軟體簡介 11
2.2-1 CellNetAnalyzer (CNA) 11
2.2-2 General Algebraic Modeling Systrm (GAMS) 11
2.3 網路分析-線性最適化 13
2.3-1 問題描述 13
2.3-2 目標函數 15
2.3-3 限制條件 15
2.4 網路模式運算分析 16
2.4-1 通量平衡分析(Flux Balance Analysis, FBA) 16
2.4-2通量變異性分析(Flux Variability Analysis, FVA) 17
2.4-3 FBA突變問題 (FBA for Knockout Mutant, FBA_MUT) 18
2.4-4 最小代謝調控分析 (Minimization Of Metabolic Adjustment, MOMA) 18
2.4-5 最小開關代謝通量調控分析 (Regulatory On/Off Minimization Of Metabolic Flus, ROOM) 19

第三章 重建代謝網路 20
3.1 酵母菌鞘脂代謝途徑 20
3.2 人類鞘脂代謝途徑雛形 24
3.3 重建整合人類鞘脂代謝途徑 26
3.4鞘脂結構及相關疾病 31

第四章 基因調控最適通量分布 40
4.1 引言 40
4.2 利用分析軟體檢測系統 40
4.3通量變異性分析(FVA)結果 43
4.4通量平衡分析(FBA)結果 44
4.5調控酵素通量結果 48
4.5-1調控鞘脂途徑標靶酵素 48
4.5-2 調控神經鞘脂儲積症(Sphingolipidosis)相關酵素 59
4.5-3 調控圖譜各交換反應 61

第五章 結論與未來展望 93
5.1 結論 93
5.2 未來展望與建議 96

文獻回顧 97
附錄A_代謝物資訊 100
附錄B_代謝反應式資訊 103

[1]Francis S. Collins, Ari Patrinos, Elke Jordan, Aravinda Chakravarti, Raymond Gesteland, and LeRoy Walters and the members of the DOE and NIH planning groups, "New Goals for the U.S. Human Genome Project: 1998-2003," Science, vol. 282, pp. 682-689, 1998.
[2]H. Kitano, "Systems biology: A brief overview," Science, vol. 295, pp. 1662-1664, Mar 1 2002.
[3]C. M. Metallo, J. L. Walther, and G. Stephanopoulos, "Evaluation of C-13 isotopic tracers for metabolic flux analysis in mammalian cells," Journal of Biotechnology, vol. 144, pp. 167-174, Nov 2009.
[4]K. J. Kauffman, P. Prakash, and J. S. Edwards, "Advances in flux balance analysis," Current Opinion in Biotechnology, vol. 14, pp. 491-496, Oct 2003.
[5]Steffen Klamt and Jorg Stelling, "Two approaches for metabolicpathway analysis?," Trends in Biotechnology, vol. 21, pp. 64-69, 2003.
[6]C. T. Trinh, A. Wlaschin, and F. Srienc, "Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism," Applied Microbiology and Biotechnology, vol. 81, pp. 813-826, Jan 2009.
[7]D. C. Cameron and F. W. R. Chaplen, "Developments in metabolic engineering," Current Opinion in Biotechnology, vol. 8, pp. 175-180, Apr 1997.
[8]K. I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A. L. Barabasi, "The human disease network," Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 8685-8690, May 22 2007.
[9]R. Ramakrishna, J. S. Edwards, A. McCulloch, and B. O. Palsson, "Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints," American Journal of Physiology-Regulatory Integrative and Comparative Physiology, vol. 280, pp. R695-R704, Mar 2001.
[10]I. Famili and B. O. Palsson, "The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools," Biophysical Journal, vol. 85, pp. 16-26, Jul 2003.
[11]S. Gudmundsson and I. Thiele, "Computationally efficient flux variability analysis," Bmc Bioinformatics, vol. 11, Sep 29 2010.
[12]Y. A. Hannun, C. Luberto, and K. M. Argraves, "Enzymes of sphingolipid metabolism: From modular to integrative signaling," Biochemistry, vol. 40, pp. 4893-4903, Apr 24 2001.
[13]A. H. Merrill, M. C. Sullards, E. Wang, K. A. Voss, and R. T. Riley, "Sphingolipid metabolism: Roles in signal transduction and disruption by fumonisins," Environmental Health Perspectives, vol. 109, pp. 283-289, May 2001.
[14]Y. H. Zeidan and Y. A. Hannun, "Translational aspects of sphingolipid metabolism," Trends in Molecular Medicine, vol. 13, pp. 327-336, Aug 2007.
[15]Y. A. Hannun and L. M. Obeid, "Principles of bioactive lipid signalling: lessons from sphingolipids," Nature Reviews Molecular Cell Biology, vol. 9, pp. 139-150, Feb 2008.
[16]F. B. K. Ozbayraktar and K. O. Ulgen, "Molecular facets of sphingolipids: Modiators of diseases," Biotechnology Journal, vol. 4, pp. 1028-1041, Jul 2009.
[17]F. B. K. Ozbayraktar and K. O. Ulgen, "Drug target identification in sphingolipid metabolism by computational systems biology tools: Metabolic control analysis and metabolic pathway analysis," Journal of Biomedical Informatics, vol. 43, pp. 537-549, Aug 2010.
[18]F. B. K. Ozbayraktar and K. O. Ulgen, "Stoichiometric network reconstruction and analysis of yeast sphingolipid metabolism incorporating different states of hydroxylation," Biosystems, vol. 104, pp. 63-75, Apr 2011.
[19]Sarah Spiegel and Merrill AH Jr, "Sphingolipid metabolism and cell growth regulation," The FASEB Journal, vol. 10, pp. 1388-1397, 1996.
[20]F. Alvarez-Vasquez, K. J. Sims, Y. A. Hannun, and E. O. Voit, "Integration of kinetic information on yeast sphingolipid metabolism in dynamical pathway models," Journal of Theoretical Biology, vol. 226, pp. 265-291, Feb 7 2004.
[21]F. Alvarez-Vasquez, K. J. Sims, L. A. Cowart, Y. Okamoto, E. O. Voit, and Y. A. Hannun, "Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae," Nature, vol. 433, pp. 425-430, Jan 27 2005.
[22]T. Kolter and K. Sandhoff, "Sphingolipid metabolism diseases," Biochimica Et Biophysica Acta-Biomembranes, vol. 1758, pp. 2057-2079, Dec 2006.
[23]K. J. Sims, S. D. Spassieva, E. O. Voit, and L. M. Obeid, "Yeast sphingolipid metabolism: clues and connections," Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire, vol. 82, pp. 45-61, Feb 2004.
[24]L. A. Obeid, Y. Okamoto, and C. G. Mao, "Yeast sphingolipids: metabolism and biology," Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, vol. 1585, pp. 163-171, Dec 30 2002.
[25]J.S. Edwards and B.O. Palsson, "Robustness analysis of the Escherichia coli metabolic network," Biotechnology Progress, vol. 16, pp. 927-939, Nov-Dec 2000.
[26]S. Klamt, J. Saez-Rodriguez, and E. D. Gilles, "Structural and functional analysis of cellular networks with CellNetAnalyzer," Bmc Systems Biology, vol. 1, Jan 8 2007.
[27]J. Garcia, J. Shea, F. Alvarez-Vasquez, A. Qureshi, C. Luberto, E. O. Voit, and M. Del Poeta, "Mathematical modeling of pathogenicity of Cryptococcus neoformans," Molecular Systems Biology, vol. 4, Apr 2008.
[28]D. Segre, D. Vitkup, and G. M. Church, "Analysis of optimality in natural and perturbed metabolic networks," Proceedings of the National Academy of Sciences of the United States of America, vol. 99, pp. 15112-15117, Nov 12 2002.
[29]T. Shlomi, O. Berkman, and E. Ruppin, "Regulatory on/off minimization of metabolic flux changes after genetic perturbations," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 7695-7700, May 24 2005.
[30]L. A. Cowart and L. M. Obeid, "Yeast sphingolipids: Recent developments in understanding biosynthesis, regulation, and function," Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, vol. 1771, pp. 421-431, Mar 2007.
[31]K. Hanada, "Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism," Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, vol. 1632, pp. 16-30, Jun 10 2003.
[32]A. Huwiler, T. Kolter, J. Pfeilschifter, and K. Sandhoff, "Physiology and pathophysiology of sphingolipid metabolism and signaling," Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, vol. 1485, pp. 63-99, May 31 2000.
[33]Merrill A.H. Jr, Schmelz E., Wang E., Schroeder J.J., DillehayI D.L., and Riley R.T., "Role of Dietary Sphingolipids and Inhibitors of Sphingolipid Metabolism in Cancer and Other Diseases," The Journal of nutrition, pp. 1677S-1682S, 1995.
[34]B. J. Pettus, C. E. Chalfant, and Y. A. Hannun, "Ceramide in apoptosis: an overview and current perspectives," Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, vol. 1585, pp. 114-125, Dec 30 2002.
[35]Wei-Ching Huang, Chia-Ling Chen, Yee-Shin Lin, and Chiou-Feng Lin, "Apoptotic Sphingolipid Ceramide in Cancer Therapy," Journal of Lipids, 2011.
[36]J. Bar, T. Linke, K. Ferlinz, U. Neumann, E. H. Schuchman, and K. Sandhoff, "Molecular analysis of acid ceramidase deficiency in patients with Farber disease," Human Mutation, vol. 17, pp. 199-209, 2001.
[37]Q. Chen, Z. Wang, and D. Q. Wei, "Progress in the applications of flux analysis of metabolic networks," Chinese Science Bulletin, vol. 55, pp. 2315-2322, Aug 2010.
[38]M. P. Boland, S. J. Foster, and L. A. J. O'Neill, "Daunorubicin Activates NFκB and Induces κB-dependent Gene Expression in HL-60 Promyelocytic and Jurkat T Lymphoma Cells," The Journal OF Biological Chemistry, vol. 272, pp. 12952-12960, 1997.
[39]D. K. Perry, J. Carton, A. K. Shah, F. Meredith, D. J. Uhlinger, and Y. A. Hannun, "Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis," Journal of Biological Chemistry, vol. 275, pp. 9078-9084, Mar 24 2000.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top