跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 01:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許晉哲
研究生(外文):Shiu, Jinje
論文名稱:Pichia stipitis利用葡萄糖與木糖共醱酵生產酒精之饋料批式最適化
論文名稱(外文):Optimal Fed-Batch of Ethanol Fermentation Using Pichia stipitis on Mixture of Glucose and Xylose
指導教授:王逢盛
指導教授(外文):Wang, Fengsheng
口試委員:周宜雄錢玉樹黃奇英
口試委員(外文):Chou, YishyongChien, YushuHuang, Chiying
口試日期:2012-06-28
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:酒精共醱酵木糖葡萄糖Pichia stipitis
外文關鍵詞:Pichia stipitisfermentationglucosexyloseethanol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:421
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
生質酒精是利用微生物醱酵把生質料源中的醣分轉化為酒精。而製造生質酒精的料源大致區分為糖質原料、澱粉質原料、纖維質原料。其中的纖維質原料經過水解程序可得到五碳糖與六碳糖(大部分是木糖與葡萄糖)。
本研究利用不同比例的葡萄糖與木糖作為基質進行批次醱酵。實驗結果發現,Pichia stipitis會先消耗完葡萄糖再消耗木糖,依據此現象我們提出適合的動力學模式,並且以實驗數據為依據,利用混合差值演算法(Hybrid Differential Evolution, HDE)估計參數以建立模式。此模式可以預測混合糖的消耗、菌體和酒精的生成對時間的關係,模擬的結果準確預測實驗數據。接著利用建立的批式醱酵動力學模式設計饋料批式醱酵的最佳進料策略,並利用計算出的最佳進料策略進行饋料批式醱酵實驗,實驗結果得知饋料批式醱酵的酒精生產力為批式醱酵的1.18倍。

Microbe can be applied to convert biomaterials to produce bioethanol. Such raw materials are roughly categorized as sugar, starch and lignocellulose. Lignocellulose can be hydrolyzed to pentose and hexose, e.g. xylose and glucose in general.
In this study, we use different synthetic glucose/xylose mixtures to ferment into ethanol in batch process. Pichia stipitis consume glucose first and then xylose. We propose a suitable kinetic model based on this phenomenon and use Hybrid Differential Evolution to estimate parameters. The model can predict the mixed-sugar consumption and the formation of biomass and ethanol with time-course data, and the simulation results accurately fit the experimental data. Then, the optimal feeding strategy of fed batch fermentation that we used to design fed batch experiment depends on the kinetic batch model we building up. Finally, the experimental results indicated that the ethanol productivity of fed-batch fermentation was 1.18-fold of batch fermentation.

中文摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.2.1 生質酒精的應用與製備 4
1.2.2 五碳糖醱酵的菌種介紹 7
1.2.3 混合差值演算法原理 8
1.3 研究動機 15
1.4 組織章節 15
第二章 實驗材料、設備、方法與步驟 16
2.1 實驗藥品 16
2.1.1 菌種來源與特性 16
2.1.2 菌種保存培養基 16
2.1.3 菌種生長培養基 17
2.1.4 分析藥品 17
2.1.5 HPLC溶劑 18
2.1.6 其它用藥 18
2.2 實驗設備 19
2.3 菌體培養方法 21
2.3.1 菌株保存 21
2.3.2 固態斜面培養 22
2.3.3 液態搖瓶培養 23
2.3.4 菌體生長曲線 24
2.4 濃度分析 26
2.4.1 菌體檢量線之製作 26
2.4.2 SUPELCOGEL Ca之葡萄糖檢量線製作 27
2.4.3 SUPELCOGEL Ca之木糖檢量線製作 27
2.4.4 SUPELCOGEL Ca之乙醇檢量線製作 28
2.5 高效能液相層析儀之操作 31
2.6 實驗方法與步驟 33
2.6.1 發酵槽各項設備之校正 33
2.6.2 醱酵程序 38
2.6.3 醱酵槽培養之菌體濃度測定 44
第三章 實驗結果與討論 45
3.1 批式醱酵實驗 45
3.2 建立批次醱酵模式 49
3.3 饋料批式醱酵最佳化 56
第四章 結論與建議 62
4.1 結論 62
4.2 建議 62
參考文獻 63
附錄 利用簡化的模式執行參數估計 67

[1]L. R. Lynd, "Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy," Annual Review of Energy and the Environment, vol. 21, pp. 403-465, 1996.
[2]d. C. M. I, "Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil," Biomass and Bioenergy, vol. 14, pp. 77-81, 1996.
[3]J. R. Kwiatkowski, A. J. McAloon, F. Taylor, and D. B. Johnston, "Modeling the process and costs of fuel ethanol production by the corn dry-grind process," Industrial Crops and Products, vol. 23, pp. 288-296, May 2006.
[4]J. A. Quintero, M. I. Montoya, O. J. Sanchez, O. H. Giraldo, and C. A. Cardona, "Fuel ethanol production from sugarcane and corn:Comparative analysis for a Colombian case," Energy, vol. 33, pp. 385-399, 2006.
[5]F. K. Kazi, J. A. Fortman, R. P. Anex, D. D. Hsu, A. Aden, A. Dutta, and G. Kothandaraman, "Techno-economic comparison of process technologies for biochemical ethanol production from corn stover," Fuel, vol. 89, pp. 20-28, 2010.
[6]O. Colagrande, A. Silva, and M. D. Fum, "Recent applications of biotechnology in wine production," Biotechnol Prog, vol. 10, pp. 2-18, 1994.
[7]T. W. Jeffries and Y.-S. Jin, "Metabolic engineering for improved fermentation of pentoses by yeasts," Appl Microbiol Biotechnol, vol. 63, pp. 495-509, 2004.
[8]C. A. Batt, S. Caryallo, D. D. E. Jr., M. Akedo, and A. J. Sinskey, "Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae," Biotechnol Bioeng, vol. 28, pp. 549-553, 1986.
[9]M. S. Krishnan, Y. Xia, N. W. Y. Ho, and G. T. Tsao, "Fuel Ethanol Production from Lignocellulosic Sugars: Studies Using a Genetically Engineered Saccharomyces Yeast," Acs Symposium Series, vol. 666, pp. 74-92, 1997.
[10]C. F. Wahlbom, R. R. C. Otero, W. H. v. Zyl, B. Hahn-Hägerdal, and L. J. Jönsson, "Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway," Appl Environ Microbiol, vol. 69, pp. 740-746, 2003.
[11]C. F. Wahlbom, W. H. v. Zyl, L. J. Jönsson, B. Hahn-Hägerdal, and R. R. C. Otero, "Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054," FEMS Yeast Research, vol. 3, pp. 319-326, 2003.
[12]A. Toivola, D. Yarrow, E. Bosch, and J. Dijken, "Alcoholic Fermentation of D-Xylose by Yeasts," Appl Environ Microbiol, vol. 47, pp. 1221-1223, 1984.
[13]M. E. Ligthelm, B. A. Prior, and J. C. Preez, "The oxygen requirements of yeasts for the fermentation of d-xylose and d-glucose to ethanol," Appl Microbiol Biotechnol, vol. 28, pp. 63-68, 1988.
[14]P. J. Slininger, R. J. Bothast, J. E. V. Cauwenberge, and C. P. Kurtzman, "Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus," Biotechnol Bioeng, vol. 24, pp. 371-384, 1982.
[15]V. Bravo, F. Camacho, S. Sánchez, and E. Castro, "Influence of the concentrations of d-xylose and yeast extract on ethanol production by Pachysolen tannophilus," Fermentation and Bioengineering, vol. 79, pp. 566-571, 1995.
[16]S. Sánchez, V. Bravo, E. Castro, A. J. Moya, and F. Camacho, "Comparative study of the fermentation of D-glucose/D-xylose mixtures with Pachysolen tannophilus and Candida shehatae," Bioprocess Engineering, vol. 21, pp. 525-532, 1999.
[17]L. Zhao, X. Zhang, and T. Tan, "Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus," Biomass and Bioenergy, vol. 32, pp. 1156-1161, 2008.
[18]L. Zhao, J. Yu, X. Zhang, and T. Tan, "The ethanol tolerance of Pachysolen tannophilus in fermentation on xylose," Appied Biochemistry and Biotechnology, vol. 160, pp. 378-385, 2010.
[19]S. Sánchez, V. Bravo, E. Castro, A. J. Moya, and F. Camacho, "The influence of pH and aeration rate on the fermentation of D-xylose by Candida shehatae," Enzyme and Microbial Technology, vol. 21, pp. 355-360, 1997.
[20]J. C. d. Preez and J. P. v. d. Walt, "Fermentation of D-xylose to ethanol by a strain of Candida shehatae," Biotechnology Letters, vol. 5, pp. 357-362, 1983.
[21]F. K. Agbogbo, G. Coward-Kelly, M. Torry-Smith, K. Wenger, and T. W. Jeffries, "The Effect of Initial Cell Concentration on Xylose Fermentation by Pichia stipitis," Appl Biochem Biotechnol, vol. 136-140, pp. 653-662, 2007.
[22]F. K. Agbogbo, G. Coward-Kelly, M. Torry-Smith, and K. Wenger, "Fermentation of glucose/xylose mixtures using Pichia stipitis," Process Biochemistry, vol. 41, pp. 2333-2336, 2006.
[23]C. F. Huang, T. H. Lin, G. L. Guo, and W. S. Hwang, "Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis," Bioresour Technol, vol. 100, pp. 3914-3920, 2009.
[24]J. P. Delgenes, R. Moletta, and J. M. Navarro, "The effect of aeration on D-xylose fermentation by Pachysolen tannophilus, Pichia stipitis, Kluyveromyces marxianus and Candida shehatae," Biotechnology Letters, vol. 8, pp. 897-900, 1986.
[25]S. Sánchez, V. Bravo, E. Castro, A. J. Moya, and F. Camacho, "The fermentation of mixtures of D-glucose and D-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol," Chemical Technology and Biotechnology, vol. 77, pp. 641-648, 2002.
[26]T. Back, D. Fogel, and Z. Michalewicz, "Handbook of evoluatary computation," 1997.
[27]R. Storn and K. Price, "Minimizing the real functions of the ICEC'96 contest by differential evolution," pp. 842-844, 1996.
[28]J. P. Chiou and F. S. Wang, "A hybrid method of differential evolution with application to optimal control problems of a bioprocess system," IEEE, pp. 627-632, 1998.
[29]J. V. Dijken and W. A. Scheffers, "Method for producing ethanol from xylose-containing substance," Applied Sciences, 1987.
[30]K. Skoog and B. Hahn-Hagerdal, "Effect of Oxygenation on Xylose Fermentation by Pichia stipitis," Appl Environ Microbiol, vol. 56, pp. 3389-3394, 1990.
[31]H. Jørgensen and J. B. Kristensen, "Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities," Biofuels, Bioproducts and Biorefining, vol. 1, pp. 119-134, 2007.
[32]W. H. Huang and F. S. Wang, "Kinetic modeling of batch fermentation for mixed-sugar to ethanol production," Journal of the Taiwan Institute of Chemical Engineers, vol. 41, pp. 434-439, 2010.
[33]J. F. Andrews, "A Mathematical Model for the Continuous Culture of Microorganisms Utilizing Inhibitory Substrates," Biotechnol Bioeng, vol. 10, pp. 707-723, 1968.
[34]M. L. Chen and F. S. Wang, "Optimization of a fed-Batch simultaneous saccharification and cofermentation process from lignocellulose to ethanol," Industrial & Engineering Chemistry Research, vol. 49, pp. 5775-5785, 2010.
[35]F. S. Wang and J. W. Sheu, "Multiobjective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast," Chemical Engineering Science, vol. 55, pp. 3685-3695, 1998.
[36]F. S. Wang, T. L. Su, and H. J. Jang, "Hybrid differential evolution for problems of kinetic parameter estimation and dynamic optimization of an ethanol fermentation process," Industrial & Engineering Chemistry Research, vol. 40, pp. 2876-2885, 2001.
[37]Y. F. Chen and F. S. Wang, "Crisp and fuzzy optimization of a fed-batch fermentation for ethanol production," Industrial & Engineering Chemistry Research, vol. 42, pp. 6843-6850, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊