跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許謙鵬
研究生(外文):Hsu, Chienpeng
論文名稱:太陽能導電銀漿之基礎流變性質研究
論文名稱(外文):Investigation On The Rheological Properties Of Silver Pastes
指導教授:華繼中
指導教授(外文):Hua, Chi-Chung
口試委員:李岱洲華繼中黃光策王朝弘
口試日期:2012-07-17
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:57
中文關鍵詞:太陽能導電銀漿流變結構破壞與回復多晶太陽能電池
外文關鍵詞:Silver PasteRheologyStructure Decomposition & RecoveryMulti-crystalline Solar Cells
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1309
  • 評分評分:
  • 下載下載:125
  • 收藏至我的研究室書目清單書目收藏:0
導電銀漿廣泛應用於多晶太陽能面板的正面銀線部分,為降低銀線的遮蔽效應並且維持其低電阻性,印刷出具有較大高寬比 (high aspect ratio) 的正面銀線成為主要目標。為達此目的,在太陽能面板製作過程中,了解導電銀漿的流變性如何影響其於印刷過程中的行為,為首要的研究課題。此外,為了解導電銀漿個別成分對其流變性質的影響,我們亦分別針對導電銀漿中無機及有機成份,進行一系列的流變實驗探討。於本研究中,我們利用穩態剪切流動 (steady shear) 、頻率掃描 (frequency sweep) 、應力漸升 (stress ramp) 、緩應力拉伸與回復 (creep and strain recovery) 、單一應變流場 (single-step strain) 及結構破壞與回復 (structure decomposition & recovery) 實驗,探測導電銀漿及其個別成分的流變性質。整體而言,本篇的主要發現如下:一、具有極為類似穩態剪切黏度曲線 (steady-state viscosity curve) 的兩種不同導電銀漿,其於黏彈性行為 (viscoelastic behaviors) 表現上可具有明顯差異。二、於導電銀漿及其個別成份的黏彈性行為比較中顯示,導電銀漿的黏彈性行為主要由有機組成 (即高分子) 所控制。三、於模擬導電銀漿在實際印刷行為實驗中顯示,無機組成 (即銀粉膠體) 的印刷性相當不理想。根據以上發現,我們討論影響導電銀漿之流變性質的主要因素。
Silver pastes have been widely used in the fabrication of front-side metallization for multi-crystalline silicon solar cells, aimed at printing fine lines with a high aspect ratio. Rheological features are very important to describe the paste behavior during printing, yet there was few or no study that differentiates the roles of inorganic and organic components, respectively. In this work, we investigated the rheological properties of a silver paste and its components under steady shear, frequency sweep, stress ramp, creep and strain recovery, single-step strain, and structure decomposition & recovery tests. The major findings are (i) distinct viscoelastic behaviors may correspond to a very similar steady-state viscosity curve, (ii) the organic component (i.e., the polymer), in general, has a greater influence on the results of all viscoelastic tests, and (iii) the screen printing tests show a poor printing quality of the inorganic component (i.e., the silver colloids). Accordingly, we discuss essential factors controlling the rheological properties of silver pastes.
Table of Contents
Acknowledgements i
Abstract (in Chinese) ii
Abstract (in English) iii
Table of Contents iv
List of Figures vi
List of Tables ix
Chapter 1 Introduction 1
1.1 Motivations and Outline 1
1.2 Silver Pastes 3
1.2.1 Inorganic Components 4
1.2.2 Organic Components 4
1.2.3 Thixotropic Agent 5
1.3 Yield Stress 5
1.4 Screen-Printing 6
Chapter 2 Experimental Section 8
2.1 Sample Preparation 8
2.2 Instrumentation 11
2.3 Rheological Measurements 11
2.3.1 Steady-Shear Flow Tests 12
2.3.2 Frequency Sweep 12
2.3.3 Stress Ramp Tests 12
2.3.4 Creep and Strain Recovery 13
2.3.5 Single-Step Strain 13
2.3.6 Structure Decomposition & Recovery 14
Chapter 3 Results and Discussion 15
3.1 Steady Shear Properties 16
3.2 The Viscoelastic Behavior 18
3.2.1 Silver Pastes 18
3.2.2 Thixotropic Agent 21
3.2.3 Inorganic and Organic Components 22
3.3 The Yield Stress 27
3.3.1 Stress Ramp Test 27
3.3.2 Creep and Strain Recovery 28
3.3.3 Strain Recovery Ratio 31
3.4 Single-Step Strain 33
3.5 Structure Decomposition & Recovery 35
Chapter 4 Conclusions 43
References 45



List of Figures
FIG. 1.1. A schematic diagram of screen printing 7
FIG. 2.1. A schematic diagram of cone-and-plate geometry 11
FIG. 3.1. The viscosity curves of two commercial pastes presently studied 17
FIG. 3.2. The corresponding first normal stress difference of the pastes considered in Fig. 3.1 17
FIG. 3.3. The viscoelasticity of SOL9411 (with ) 19
FIG. 3.4. The viscoelasticity of PV16L (with ) 19
FIG. 3.5. The damping factors ( ) of two commercial pastes, respectively 20
FIG. 3.6. The viscoelasticity of the thixotropic agent (with ) 21
FIG. 3.7. The viscoelasticity of the inorganic component (with ) 23
FIG. 3.8. The viscoelasticity of the inorganic component (with ) 23
FIG. 3.9. The viscoelasticity of the inorganic component (with ) 24
FIG. 3.10. The viscoelasticity of the organic component (with ) 24
FIG. 3.11. The viscoelasticity of the organic component (with ) 25
FIG. 3.12. The viscoelasticity of the organic component (with ) 25
FIG. 3.13. The damping factor ( ) of the inorganic component at various strains 26
FIG. 3.14. The damping factor ( ) of the organic component at various strains 26
FIG. 3.15. The stress-strain curves of two commercial pastes, inorganic and organic components, respectively 28
FIG. 3.16. Creep and strain recovery profile of SOL9411 for various applied stress levels 29
FIG. 3.17. Creep and strain recovery profile of PV16L for various applied stress levels 29
FIG. 3.18. Creep and strain recovery profile of the inorganic component for various applied stress levels 30
FIG. 3.19. Creep and strain recovery profile of the organic component for various applied stress levels 30
FIG. 3.20. Determination of yield stresses from strain recovery ratio for SOL9411 32
FIG. 3.21. Determination of yield stresses from strain recovery ratio for PV16L 32
FIG. 3.22. The relaxation modulus, , of SOL9411 at various strains 34
FIG. 3.23. The relaxation modulus, , of PV16L at various strains 34
FIG. 3.24. Storage and loss moduli for this paste 36
FIG. 3.25. The phase angle for this paste 36
FIG. 3.26. An amplitude sweep test with for this paste 37
FIG. 3.27. The phase angle of amplitude sweep test with for this paste 37
FIG. 3.28. The viscoelasticity behavior with for this paste 38
FIG. 3.29. The viscoelasticity behavior with for this paste 38
FIG. 3.30. Storage and loss moduli for this silver paste 40
FIG. 3.31. The phase angle for this silver paste 40
FIG. 3.32. Storage and loss moduli for the inorganic components 41
FIG. 3.33. The phase angle for the inorganic components 41
FIG. 3.34. Storage and loss moduli for the organic components 42
FIG. 3.35. The phase angle for the organic components 42


List of Tables
TABLE 2.1. Material properties of the samples investigated in this study 10


溫玉合,單、雙分子量分布系統之糾葛性高分子於單一應變流下短時間鏈長鬆馳行為之理論與實驗探討,碩士論文,中正大學,民國九十四年。
Cheek GC, Mertens RP, Overstraeten RJV (1984) Thin film metallization for solar cell applications. IEEE Trans Electron Devices ED-31:602-609
Cheng DCH (1986) Yield stress: a time-dependent property and how to measure it. Rheol Acta 25:542-554
Durairaj R, Ekere NN, Salam B (2004) Thixotropy flow behaviour of solder and conductive adhesive pastes. J Mater Sci: Mater Electron 15:677-683
Field MB, Scudder LR (1976) Application of thick-film technology to solar cell fabrication. 12th IEEE Photovoltaics Specialists Conference, Baton Rouge, USA
Frisson L, Lauwers P, Bulteel P, De Smet L, Mertens R, Govaerts R, Van Overstraeten R (1978) Screen printed contacts on silicon solar cells with low series resistance. 13th IEEE Photovoltaics Specialists Conference, Washington, USA
Grupp G, Biro D, Emanuel G, Preu R, Schitthelm F, Willeke G (2005) Analysis of silver thick-film contact formation on industrial silicon solar cells. 31th IEEE Photovoltaics Specialists Conference, Orlando, Florida
Hilali MM, Rohatgi A, Asher S (2004) Development of screen-printed silicon solar cells with high fill factors on 100 Ω/sq emitters. IEEE Trans Electron Device 51:948–55
Hoornstra J, Webber AW, De Moor HHC, Sinke WC (1997) The importance of paste rheology in improving fine line, thick film screen printing of front side metallization. 14th European Photovoltaic Solar Energy Conference and Exhibition, 30th June-4th July, Barcelona, Spain
Luo S, Wang N, Xu W, Lv Y (2008) Preparation and rheological behavior of lead free silver conducting paste. Mater Chem Phys 111:20-23
McCann MJ, Catchpole KR, Weber KJ, Blakers AW (2001) A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates. Solar Energy Materials & Solar Cells 68:135-171
Mette A (2007) New concepts for front side metallization of industrial silicon solar cells. Doctoral Thesis, Faculty for Applied Science, Universität Freiburg: Freiburg: 231
Montesi A, Peña AA, Pasquali M (2004) Vorticity Alignment and Negative Normal Stresses in Sheared Attractive Emulsions. Phys Rev Lett 92 058303
Nguty TA, Ekere NN (2000) The rheological properties of solder and solar pastes and the effect on stencil printing. Rheol Acta 39:607-612
Nguty TA, Ekere NN (2000) Modeling the effects of temperature on the rheology of solder pastes and flux system. J Mater Sci: Mater Electron 11:39-43
Uhlherr PHT, Guo J, Tiu C, Zhang XM, Zhou JZQ, Fang TN (2005) The shear-induced solid-liquid transition in yield stress materials with chemically different structures. J Non-Newtonian Fluid Mech 125:101-119

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top