跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 18:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李璟郁
研究生(外文):Lee, Jing-Yu
論文名稱:利用金屬茂及鏈轉移劑合成含立體規則性雙團聯高分子
論文名稱(外文):Preparation of structurally well-defined stereoregular diblock copolymers via metallocene-mediated selective chain transfer reactions
指導教授:蔡敬誠
指導教授(外文):Tsai, Jing-Cherng
口試委員:陳信龍何榮銘蔡敬誠林慶炫蔣酉旺
口試委員(外文):Chen, Hsin-LungHo, Rong-MingTsai, Jing-CherngLin, Ching-HsuanChiang, Yeo-Wan
口試日期:2012-07-18
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:258
中文關鍵詞:金屬茂觸媒鏈轉移劑雙嵌段共聚合物
外文關鍵詞:Metallocenechain transfer agentdiblock copolymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:503
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
Metallocene catalysts have attracted much attention form the both industry and academic because of their capabilities in providing architectural controls for polyolefins. In light of the important applications in the metallocene technology, this research is aiming for the development of new synthetic methods that offer the successful preparation of polypropylene-based stereoregular (including isotactic and syndiotactic) diblock copolymer.
In our reach, stereoregular diblock copolymers will be prepared by two step processes. First, end-functionalized stereoregular polypropylene was generated by conducting the selective transfer chain reaction to chain transfer reagents during the stereospecific propylene polymerization in the pressence of novel chain transfer reagents.(e.g., norbornadieneene/hydrogne (NBD), vinylsilanes/hydrogne, Triethylaluminum/ bromide),and has leads to the generation of end-functionalized stereoregular PPs end –capped with chain transfer agents. Second, post polymerization of the end-functionalized PP via using the end-functional group as the linkage proves the successful generation of stereoregular PP based aiblock copolymers, which have well defined chain structures.
Several novel diblock copolymers, including the poly(propylene)-blcok- poly(styrene) (PP-b-PS), poly(propylene)-blcok-poly(methyl methacrylate) (PP-b-PMMA), poly(propylene)-block–poly(DL-lactide) (PP-b-PLLA), poly(propylene)-blcok-poly(diphenylacrylamide) (PP-b-PDPAA) and poly(propylene)-blcok-poly(3-hexylthiophene) (PP-b-P3HT) were synthesized by the synthetic route. Our results also indicate that the stereoregular polypropylene-based diblock copolymer have uniform chemical structures and block lengths, and are suitable for use in the self-assembly studies for the construction of consistent nanostructures as revealed by TEM and SAXS analyses. Moreover, these novel synthetic routes offer the successful preparations of the structurally well-defined stereoregular polypropylene-based diblock copolymer, which are difficult to prepare by other methods.

Metallocene catalysts have attracted much attention form the both industry and academic because of their capabilities in providing architectural controls for polyolefins. In light of the important applications in the metallocene technology, this research is aiming for the development of new synthetic methods that offer the successful preparation of polypropylene-based stereoregular (including isotactic and syndiotactic) diblock copolymer.
In our reach, stereoregular diblock copolymers will be prepared by two step processes. First, end-functionalized stereoregular polypropylene was generated by conducting the selective transfer chain reaction to chain transfer reagents during the stereospecific propylene polymerization in the pressence of novel chain transfer reagents.(e.g., norbornadieneene/hydrogne (NBD), vinylsilanes/hydrogne, Triethylaluminum/ bromide),and has leads to the generation of end-functionalized stereoregular PPs end –capped with chain transfer agents. Second, post polymerization of the end-functionalized PP via using the end-functional group as the linkage proves the successful generation of stereoregular PP based aiblock copolymers, which have well defined chain structures.
Several novel diblock copolymers, including the poly(propylene)-blcok- poly(styrene) (PP-b-PS), poly(propylene)-blcok-poly(methyl methacrylate) (PP-b-PMMA), poly(propylene)-block–poly(DL-lactide) (PP-b-PLLA), poly(propylene)-blcok-poly(diphenylacrylamide) (PP-b-PDPAA) and poly(propylene)-blcok-poly(3-hexylthiophene) (PP-b-P3HT) were synthesized by the synthetic route. Our results also indicate that the stereoregular polypropylene-based diblock copolymer have uniform chemical structures and block lengths, and are suitable for use in the self-assembly studies for the construction of consistent nanostructures as revealed by TEM and SAXS analyses. Moreover, these novel synthetic routes offer the successful preparations of the structurally well-defined stereoregular polypropylene-based diblock copolymer, which are difficult to prepare by other methods.

Acknowledgements 2
Abstract 3
1.1 Polypropylene 19
1.2 Activation of Metallocene Precatalysts 20
1.3 Mechanism of Polymer Chain Propagation 22
1.4 Stereoselective Polymerization of Propylene 23
1.5 End Functionalizations of Poly(olefin)s 32
1.6 Chain-end functionalized polypropylene 35
1.7 Atom Transfer Radical Polymerization 43
1.8 Block Copolymers 49
1.8.1 General Synthetic Strategies 50
1.8.2 Self-Assembly of Block Copolymers 51
1.9 Reference 54
Chapter 2: Objectives 62
2.1 Motivation of this study 62
Chapter 3 End-functionalization of Isotactic Polypropylene via Consecutive Chain Transfer Reaction to Norbornadiene and Hydrogen 73
3.1 Introduction 73
3.2 Experimental 76
3.2.1 General Procedure 76
3.2.2 Synthesis of Norbornadiene End-capped Isotatic Polypropylene (NBD-Capped iPP) 77
3.2.3 Synthesis of the Hydroxyl-capped Isotatic Polypropylene (OH-capped iPP) 78
3.2.4 Synthesis of α-bromoester End-capped iPP 79
3.2.5 Preparation of iPP-b-PMMA 79
3.2.6 Preparation of iPP-b-aPS 80
3.2.7 Polymer Analysis 81
3.3 Results and Discussion 82
3.3.1 Isospecific Propylene Polymerization Conducted in the Presence of Norbornadiene (NBD) 85
3.3.2 Structural Characterization of Propylene Polymers Prepared in the Presence of NBD and H2 Using Various Isospecific Metallocene Catalysts 88
3.3.3 Chain-end Structural Analyses for Polymers Prepared with Catalyst (III) 95
3.3.4 Proposed Chain Reaction Pathways 100
3.3.5 End-Functionalizations of NBD-capped PP 103
3.3.6 Syntheses of iPP-based Stereoregular Diblock Copoloymers by Postpolymerization of NBD-capped iPP 105
3.4 Conclusions 114
3.5 Reference 115
Chapter 4 The Vinylsilanes Inducing Selective Chain Transfer Reactions: A New Method for End-Functionalization of stereoregular Polypropylene 122
4.1 INTRODUCTION 122
4.2 EXPERIMENTAL SECTION 126
4.2.1 General Procedure 126
4.2.2 Synthesis of (9-BBN)ethyldimethylvinylsilane (B-DMVS) 127
4.2.3 Synthesis of trimethylvinylsilane-capped syndotactic polypropylene (VTMS-capped sPP) 127
4.2.4 Synthesis of B-DMVS-capped syndiotactic polypropylene (B-DMVS-capped sPP) and transformation of the terminal borane group to hydroxyl group 128
4.2.5 Fractionation of Hydroxyl-capped syndiotactic polypropylene 129
4.2.6 Preparation of α-bromoisobutylester-capped sPP 130
4.2.7 Preparation of sPP-b-PMMA 131
4.2.9 Polymer Analysis 132
4.2.10 Preparation of Bulk Sample 133
4.2.11 Characterization of Nanostructures 134
4.3 Results and Discussion 135
4.3.1 Borane-containing vinylsilane chain transfer agent 135
4.3.2 Mechanism of syndiotactic Propylene polymerization and Vinylsilane as Selective Chain Transfer Agent 138
4.3.3 Stereoregular Propylene Polymerization Conducted in the Presence of Vinylsilane 141
4.3.4 End Group Analyses of vinylsilane-capped sPP 148
4.3.5 End Group Analyses of vinylsilane-capped iPP 163
4.3.6 End-Functionalizations of Hydroxyl-capped PP 182
4.3.7 Preparations of sPP-b-PMMA and sPP-b-DPAA via Atom Transfer Radical Polymerization (ATRP) 186
4.3.8 Preparations of iPP-b-PLA via Ring opening Polymerization 193
4.3.9 Morphological characterization of stereoregular PP based block copolymer. 196
4.4 Conclusions 202
4.5 References 203
Chapter 5 Synthesis Crystalline-Crystalline Block Copolymers of Poly(3-hexylthiophene) –block–Syndiotactic Polypropylene Prepared by “Click” Chemistry 208
5.1 INTRODUCTION 208
5.2 EXPERIMENTAL SECTION 211
5.2.1 General Procedure. 211
5.2.2 Preparation of Bromide-capped sPP. 212
5.2.3 Fractionation of Bromide-capped sPP. 213
5.2.4 Preparation of Azide-capped sPP 213
5.2.5 Representative Procedure for the Synthesis of Ethynyl-capped P3HT. 214
5.2.6 Representative Procedure for the Synthesis of sPP-b-P3HT. 215
5.2.7 Polymer Analysis. 216
5.3 Results and Discussion 218
5.3.1 End Group Analyses of Bromide-capped sPP and Azide-capped sPP. 218
5.3.2 Syntheses Structured Characterization of Ethynyl-Terminated P3HT. 226
5.3.3 Synthesis of sPP-block-P3HT via Click Chemistry. 230
5.4 Conclusion 239
5.5 Reference 240
5.6 Supporting Information 246

1.Thayer, A. M. Chem. Eng. New. 1995, 73, 15.
2.Baum, P.; Engelmann, J. Nachr. Chem. Tech. Lab. 2001, 49, 359
3.Sinclair, K. B. Lecture in Conference on Insertion Polymerization, Ludwigshafen, 28th September, 2000.
4.McCoy, M.; Reisch, M. S.; Tullo, A. H.; Short, P. L.; Tremblay, J.-F.; Storck, W. J. Facts and figures for the chemical industry. Chem. Eng. News 2004, 82, 23.
5.Stehling, U.; Diebold, J.; Kirsten, R.; Roell, W.; Brintzinger, H. H.; Juengling, S.; Muelhaupt, R.; Langhauser, F. Organometallics 1994, 13, 964.
6.Spaleck,W.; Kueber, F.;Winter, A.; Rohrmann, J.; Bachmann, B.; Antberg, M.; Dolle, V.; Paulus, E. F. Organometallics 1994, 13, 954.
7.Maier, Clive; Calafut, Teresa (1998). Polypropylene: the definitive user's guide and databook. William Andrew. p. 14.
8.Irwin, J. L.; Miller, S. A.; J. Am. Chem. Soc. 2005, 127, 9972.
9.Wilkinson, G.; Pauson, P.L.; Birmingham, J.M.; Cotton F.A. J. Am. Chem. Soc., 1953, 75, 1011.
10.Long, W.P.; Breslow, D.S., Jus. Lieb. Ann. Chem., 1975, 463.
11.Sinn, H.; Kaminsky, W. Adv. Organomet. Chem., 1980, 18, 99.
12.Pedeutour, J.-N.; Radhakrishnan, K.; Cramail, H.; Deffieux, A. Macromol. Rapid Commun. 2001, 22, 1095.
13.Zurek, E.; Woo, T.K.; Firman, T.K.; Ziegler, T. Inorg Chem, 2001, 40, 361-370.
14.Yano, A.; Hasegawa, S.; Yamada, S.; Akimoto, A. J. Mol. Cat. Chem., 1999, 148, 77.
15.Kaul, F.A.R.; Puchta, G.T.; Schneider, H.; Grosche, M.; Mihalios, D.; Herrmann, W.A., J Organomet Chem, 2001, 621, 177.
16.Grubbs, R.H.; Coates, G.W. Acc. Chem. Res., 1996, 29, 85.
17.Petitjean, L.; Pattou D., Ruiz-López M.F. J. Phys. Chem. B, 1999, 103 27.
18.Woo, T.K.; Margl, P.M.; Lohrenz, J.C.W.; Blöchl, P.E.; Ziegler, T. J. Am. Chem. Soc., 1996, 118, 13021.
19.Chirik, P.J.; Nathan, F.D.; Henling, L.M.; Bercaw, J.E. Organometallics, 2005, 24, 2789.
20.Ducéré, J-M., Cavallo, L. Organometallics, 2006, 25, 1431.
21.Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem Rev, 2000, 100, 1253.
22.Bovey, F. A.; Mirau, P. A. NMR of Polymers; Academic Press: San Diego, 1996.
23.Cheng, H. N. NMR characterization of polymers. In Modern Methods of Polymer Characterization; Barth, H. G., Mayes, J. W., Eds.; Chemical Analysis Series 113; John Wiley and Sons: New York, 1991; 409–493.
24.Kaminsky, W.; Külper, K.; Britzinger, H. H.; Wild, F. R. W. P. Angew. Chem. Int. Ed. Engl. 1985, 24, 507.
25.Wild, F. R. W. P.; Zaolani, L.; Brintzinger, H. H. J. Orgnaomet. Chem. 1982, 232, 233.
26.Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. P. J. Am. Chem. Soc. 1988, 110, 6255.
27.Bochmann, M. J. Chem. Soc., Dalton Trans. 1996, 255.
28.Kaminsky, W. J. Chme. Soc. Dalton Trans. 1998, 1413.
29.Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. Angew. Chem. Int. Ed. Engl. 1996. 34. 1143.
30.Small, B. L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 4049.
31.Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; McTavish, S. J.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chem. Commun. 1998, 34, 849.
32.Spaleck, W.; Küber, F.; Winter, A.; rohrmann, J.; Bachmann, B.; Antberg, M.; Dolle, V.; Raulus, E. F. Organometallics 1994, 13, 954.
33.(a) Burger, B. J.; Thompson, M. E.; Cotter, W. D.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 1566.
34.Hajela, S. Bercaw, J. E. Organometallics 1994, 13, 1147.
35.Alelyunas, Y. W.; Guo, Z.; Lapointe, R. E.; Jordan, R. F. Organometallics 1993, 12, 544.
36.Guo. Z.; Swenson, D.; Jordan, R. F. Organometallics 1994, 13, 1424.
37.Zhong, Z.; Dijkstra, P. J.; Feijen, J. Angew. Chem., Int. Ed. Engl. 2002, 41, 4510.
38.Chisholm, M. H.; Patmore, N. J.; Zhou, Z. Chem. Commun. 2005, 41, 127.
39.Radano, C. P.; Baker, G. L.; Smith, M. R. III. J. Am. Chem. Soc. 2000, 122, 1552.
40.Watson, P. L.; Roe, D. C. J. Am. Chem. Soc. 1982, 104, 6471.
41.Chien, J. C. W.; Kuo, C.-I. J. Polym. Sci. Part A: Polym. Chem. 1986, 24, 1779.
42.Chein. J. C. W.; Wang, B. P. J. Polym. Sci. Part A: Polym. Chem. 1988, 26, 3089.
43.Chien, J. C. W.; Razavi, A. J. Polym. Sci. Part A: Polym. Chem. 1986, 26, 2369.
44.Chien, J. C. W.; Wang, B. P. J. Polym. Sci. Part A: Polym. Chem. 1990, 28, 15.
45.Resconi, L.; Bossi, S.; Abis, L. Macromolecules 1990, 23, 4489.
46.Naga, N.; Mizunuma, K. Polymer 1998, 39, 5059.
47.Chisholm, M. H.; Zhou, Z. The Ohio State University, Columbus, OH. Unpublished results, 2004.
48.Chisholm, M. H.; Eilerts, N. W.; Huffman, J. C.; Iyer, S. S.; Pacold, M.; Phomphrai, K. J. Am. Chem. Soc. 2000, 122, 11845.
49.Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater. 2000, 12, 1841.
50.Kaminsky, W.; Külper, K.; Brintzinger, H. H.; Wild, F. R. W. P. Angew. Chem., Int. Ed. Engl. 1985, 24, 507.
51.Kaminsky,W. Adv. Catal. 2001, 46, 89.
52.Ewen, J. A. J. Am. Chem. Soc. 1984, 106, 6355.
53.Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev. 2000, 100, 1253.
54.Carvill, A.; Tritto, I.; Locatelli, P.; Sacchi, M. C. Macromolecules 1997, 30, 7056
55.Jüngling, S.; Mülhaupt, R.; Stehling, U.; Brintzinger, H. H.; Fischer, D.; Langauser, F. J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 1305.
56.Tsutsui, T.; Kashiwa, N.; Mizuno, A. Makromol. Chem., Rapid Commun. 1990, 11, 565.
57.Burfield, D. R.. Polymer 1984, 25, 1817.
58.Shiono, T.; Soga, K. Macromolecules 1992, 25, 3356.
59.Shiono, T.; Kurosawa, H.; Soga, K. Macromolecules 1994, 27, 2635.
60.Shiono, T.; Kurosawa, H.; Soga, K. Macromolecules 1995, 28, 437–443.
61.Fu, P. F.; Marks, T. J. J Am. Chem. Soc. 1995, 117, 10747.
62.Koo, K.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 4019.
63.Koo, K.; Marks, T. J. J. Am. Chem. Soc. 1999, 121, 8791.
64.Chung, T. C.; Xu, G. Process for preparing polyolefin diblock copolymers involving borane chain transfer reaction in transition metal-mediated olefin polymerization. U.S. Patent 6,248,837 B1 (Penn State Research Foundation), June 19, 2001.
65.Xu, G.; Chung, T. C. J. Am. Chem. Soc. 1999, 121, 6763.
66.Xu, G.; Chung, T. C. Macromolecules 1999, 32, 8689.
67.Chung, T. C.; Xu, G.; Lu,Y.; Hu,Y. Macromolecules 2001, 34, 8040.
68.Chung, T. C.; Dong, J. Y. Polyolefin containing a terminal phenyl or substituted phenyl group and process for preparing same. U.S. Patent 6,479,600 B2 (Penn State Research Foundation), November 12, 2002.
69.Chung, T. C.; Dong, J.Y. J. Am. Chem. Soc. 2001, 123, 4871–4876.
70.Lu, H. L.; Hong, S.; Chung, T. C. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 2795.
71.Tsai, J. C.; Kuo, J. C.; Ho, R. M.; Chung, T. M. Macromolecules 2006, 39, 7520.
72.Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721.
73.Wang, J. S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614-5615.
74.Wang, J. S.; Matyjaszewski, K. Macromolecules 1995, 28, 7901.
75.Percec, V.; Barboiu, B. Macromolecules 1995, 28, 7970.
76.Haddleton, D. M.; Jasieczek, C. B.; Hannon, M. J. Macromolecules 1997, 30, 2190.
77.Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721.
78.Ando, T.; Kato, M.; Kamigaito, M.; Sawamoto, M. Macromolecules 1996, 29, 1070.
79.Granel, C.; Dubois, P.; Jerome, R.; Teyssie, P. Macromolecules 1996, 29, 8576.
80.Uegaki, H.; Kotani, Y.; Kamigaito, M.; Sawamoto, M. Macromolecules 1997, 30, 2249.
81.Ando, T.; Kamigaito, M.; Sawamoto, M. Macromolecules 1997, 30, 4507.
82.Matyjaszewski, K.; Wei, M.; Xia, J.; McDermott, N. E. Macromolecules 1997, 30, 8161.
83.Qiu, J.; Matyjaszewski, K.; Thouin, L.; Amatore, C. Macromol. Chem. Phys. 2000, 201, 1625.
84.Xia, J.; Zhang, X.; Matyjaszewski, K. In Transition Metal Catalysis in Macromolecular Design; Boffa, L. S., Novak, B. M., Eds.; ACS Symposium Series 760; American Chemical Society: Washington, DC, 2000; Chapter 13, pp 207-223.
85.Matyjaszewski, K.; Go¨belt, B.; Paik, H.-J.; Horwitz, C. P. Macromolecules 2001, 34, 430.
86.Matyjaszewski, K.; Paik, H.-J.; Zhou, P.; Diamanti, S. J. Macromolecules 2001, 34, 5125.
87.Hadjichristidis, N.; Pispas, S.; Floudas, G. A. Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, Wiley, Weinheim, 2003.
88.Pitsikalis, M; Pispas, S.; Mays, J. W.; Hadjichristidis, N. Adv. Polym. Sci. 1998, 135, 1.
89.Lodge, L. P. Macromol. Chem. Phys. 2003, 204, 265.
90.Baker, S. E.; Cai, W.; Lasseter, T. L.; Weidkamp, K. P.; Hamers, R. J. Nano. Lett. 2002, 2, 1413.
91.Riggs, J. E.; Guo, Z.; Carroll, D. L.; Sun, T.-P. J. Am. Chem. Soc. 2000, 12, 5879.
92.Banerjee, S.; Wong, S. S. Nano. Lett. 2002, 2, 195.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊