跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 09:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:丹尼丁
研究生(外文):Nitin Shivaji Dange
論文名稱:多官能基之碳環和雜環分子之創新有機催化反應之發展
論文名稱(外文):Development Of Innovative Organocatalytic Reaction Methods For The Asymmetric Synthesis Of Highly Functionalized Carbocycles And Heterocycles
指導教授:洪伯誠
指導教授(外文):Hong, Bor-Cherng
口試委員:周德璋許岱欣廖儒修李瑜章
口試委員(外文):Chou, Teh-ChangHsu Day-ShinLiao, Ju-HsiouLi, Yu-Jang
口試日期:2012-06-15
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:843
中文關鍵詞:有機催化
外文關鍵詞:Organocatalytic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
多官能基之碳環和雜環分子之創新有機催化反應之發展
This thesis accumulates our innovation in the field of asymmetric organocatalysis via sequential, cascade and one-pot reaction strategies. Second chapter introduces the first sequential organocatalytic Stetter and Michael-Aldol condensation reaction with certain evidence of kinetic asymmetric transformation. This reaction provides a simple and direct method for the stereoselective and enantioselective construction of fully functionalized cyclopentene derivatives with three contiguous chiral centers. The structures as well as the absolute configurations of adducts 51 were confirmed by X-ray analysis. Third chapter introduces unprecedented organocatalytic sequential Stetter and Michael-Aldol reaction. Synthesis of cyclopentane ring with all five-carbon stereocenters and tertiary alcohol quaternary stereocenter utilizing dynamic kinetic symmetric transformation. The introduction of an intramolecular H-bonding strategy in this system for increasing the yields of Stetter product, enabling DYKAT in Michael-Aldol reaction and obtaining a stable β-hydroxyaldehyde is especially distinguished features of this methodology. The structures as well as the absolute configurations of adducts 58 and 59 were confirmed by X-ray analysis. Forth chapter introduces organocatalytic one-pot Michael-Knoevenagel condensation-hetero-Diels-Alder reaction capable of synthesizing a variety of isochromene pyrimidinedione derivatives 68 bearing five stereocenters with excellent diastereoselectivity and enantioselectivities (up to 99 %). One-pot four consecutive reactions via organocatalysis provide an ecological and economical protocol. Excellent diastereoselectivities in intramolecular hetero-Diels-Alder reaction by a remote stereogenic center generated in situ via organocatalysis is a key feature and excellent strategy of this methodology. X-ray analysis of the appropriate adducts (80a, 80b and 79) confirm the structure and absolute configurations of the isochromene pyrimidinedione derivatives.
TABLE OF CONTENTS
ABSTRACT……………………………………………………………………………………..i
LIST OF TABLES……………………………………………………………………………....iv
LIST OF SCHEMES……………………………………………………………………………iv
LIST OF FIGURES…………………………………………………………………………….vi
LIST OF ABBREVATIONS…………………………………….………………………….xxvi

CHAPTER I
1.1 Carbene Organocatalysis…………………………………..………...……2
1.1.1 Introduction to carbenes…………………………………….………..….2
1.1.2 Umpolung concept…………………………………………………...….4
1.1.3 Mode of action and types of N-Heterocyclic carbenes……………..…....4
1.1.4 Stetter reaction…………………………………………………….……..7
1.2 Amine Organocatalysis….…………………………………………...…..10
1.2.1 Introduction to Secondary amine Organocatalysis……………….….....10
1.2.2 Iminium-Enamine concept………………………………………….…..11
1.2.3 Organocatalytic Nitroalkane Michael Reaction………………...............14
1.2.4 Organocatalytic Knoevenagel-hetero-Diels-Alder reaction…………....16
1.3 Combination of N-Heterocyclic Carbene and Amine catalysis.................17
1.4 Objectives………………………………………………………………..19

CHAPTER II
2.1 Introduction………………………………………………………………21
2.2 Result and Discussion……………………………………………………23
2.3 Determination of Relative Stereochemistry by NMR Spectroscopy…….37
2.4 Determination of Absolute Stereochemistry by X-ray analysis………....38
2.5 Proposed Reaction Mechanism…………………………………………..39
2.6 Conclusion……………………………………………………………….41

CHAPTER III
3.1 Introduction………………………………………………………………43
3.2 Result and Discussion……………………………………………………46
3.3 Determination of Relative Stereochemistry by NMR Spectroscopy…….61
3.4 Determination of Absolute Stereochemistry by X-ray analysis………....63
3.5 Proposed Reaction Mechanism…………………………………………..65
3.6 Conclusion……………………………………………………………….67

CHAPTER IV
4.1 Introduction………………………………………………………………69
4.2 Result and Discussion……………………………………………………72
4.3 Determination of Relative Stereochemistry by NMR Spectroscopy…….81
4.4 Determination of Absolute Stereochemistry by X-ray analysis………....82
4.5 Proposed Reaction Mechanism…………………………………………..84
4.6 Conclusion……………………………………………………………….87

CHAPTER V
5.1 Experimental procedure relevant to chapter II……………….………......89
5.2 Experimental procedure relevant to chapter III..…………….……….....105
5.3 Experimental procedure relevant to chapter IV..…………….……….....140

CHAPTER VI
6.1 Selected spectroscopic data relevant to chapter II……………….……...172
6.2 Selected spectroscopic data relevant to chapter III..….…………...….....307
6.3 Selected spectroscopic data relevant to chapter IV……………..…….....553

Appendix
X-Ray crystallographic data relevant to chapter II…….………………..731
X-Ray crystallographic data relevant to chapter III…….………………..757
X-Ray crystallographic data relevant to chapter IV…….…...…………..795

1.Schreiner, P.R.; Reisenauer, H.P.; Pickard, F.C.; Simmonett, A.C.; Wesley, D.A.; Császár, A.G. Nature. 2008, 453, 906–909.
2.Igau, A.; Grutzmacher, H.; Baceiredo, A.; Bertand, G. J. Am. Chem. Soc. 1988, 110, 6463–6466.

3.Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361– 363.

4.Endres, D.; Breuer, K.; Raabe, G.; Teles, J.; Runsink, J. H.; Melder, J. P.; Ebel, K.; Brode, S. Angew. Chem. Int. Ed. 1995, 34, 1021–1023.
5.Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am. Chem. Soc., 1999, 121, 2674–2678.
6.Marion, N.; Díez-González, S.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2988–3000.
7.Kirmse, W. Angew. Chem. Int. Ed. 2010, 49, 8798–8801.
8.Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231–237.
9.Glorious, F.; K. Hirano. Nucleophillic Carbenes as Organocatalysts, Ernst Schering Foundation Symposium Proceedings, 2008, Vol. 2, 159-181.
10.Stetter, H. Angew. Chem. Int. Ed. 1976, 11, 639–647.
11.Stetter, H.; Kuhlmann, H. Org. React. 1991, 40, 407.
12.Enders, D. In Stereoselective Synthesis; Spinger-Verlag:Heidelberg, Germany, 1993; 63.
13.DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.; Rovis, T. J. Am, Chem., Soc. 2009, 131, 10872–10874.
14.Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001.
15.DiRocco, D. A.; Rovis, T. J. Am, Chem., Soc. 2011, 133, 10402–10405.
16.Hajos, Z. G.; Parrish, D. R. J. Org.Chem. 1974, 39, 1615–1621.
17.Eder, U.; Sauer, G.; Weichert, R. Angew. Chem. Int. Ed. 1971, 10, 496–497.
18.List, B.; Lerner, R. A.; Barbas, C. F., III. J. Am. Chem. Soc. 2000, 122, 2395–2396.
19.MacMillan, D. W. C.; Kunz, R. K. J. Am. Chem. Soc. 2005, 127, 3240–3241.
20.Marigo, M.; Schulte, T.; Franzén, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 15710–15711.
21.(a) Sandefur, L. World Patent Application, WO 98/437. (b) Seebach, D.; Colvin, E. Chemia, 1979, 33 (c) Hergovich. E.; Speier, G. Chem. Lett. 1996, 573.
22.(a) Lewis, E. The Chemistry of Functional Groups, Supplement F; Part 2. Chapter 16, Patai (Ed) (b) Bernasconi, C.; J. Am. Chem. Soc. 1997, 119, 4008.
23.Hayashi, Y.; Gotoh, H.; Ishikawa, H. Org. Lett. 2007, 9, 5307–5309.
24.Ender, D.; Narine, A. A.; Benninghaus, Raabe, G. Synlett, 2007, 1667–1670.
25.a) Tietze, L.F.; Chem. Rev. 1996, 96, 115 –136. b) Tietze, L. F.; Ott, C.; Geibler, H.; Haunert, F. Eur. J. Org. Chem. 2001, 9, 1625–1630.
26.Rovis, T.; Lathrop, S. P. J. Am. Chem. Soc. 2009, 131, 13628–13630.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. ASYMMETRIC SYNTHESIS OF SIX-MEMBERED OXYGENATED HETEROCYCLES VIA ORGANOCATALYTIC CASCADE MICHAEL-ALDOL, MICHAEL-ACETALIZATION AND MICHAEL-ACETALYZATION-HENRY REACTION.
2. 微米尺度的隔離式及懸吊式平面磷脂雙層膜的製備與生物應用
3. 以二碘化釤進行螺環化合物之環化反應並合成三環內酯化合物
4. 利用膠體滲透層析儀配合黏度計與光散射儀量測微脂體顆粒粒徑與樹枝狀高分子分子量的探討
5. 合成不同尺寸鉑奈米粒子以及在催化反應的應用
6. 3取代鄰苯二酚與鄰苯二酚2,3雙加氧酶的抑制反應探討
7. 藉由具有質子之離子液體當催化劑改良含氧多環芳香碳氫化合物的合成與其性質之研究
8. 離子液體在柴油的脫硫及氣相層析固定相應用
9. (I) 以離子液體促進DNA的聚合酶鏈鎖反應 (II) 檢測酮類的感測型離子液體
10. Syntheses, Crystal Structures and Properties of Metal-organic Frameworks with Alkaline-earth Metal Centers Containing Carboxylate-based Ligands (1,3,5-Benzenetricarboxylate and 2-Sulfoterephthalate)
11. Syntheses, Structures and Properties of Metal-organic Materials with 2,3-Pyrazinylditetrazolate or 4,4′,4′′-s-Triazine-1,3,5-triyltri-p-aminobenzoate
12. 雙和叁吡啶醯胺配位基與銅(I)、銅(II)、鋅(II)和鎘(II)金屬離子建構金屬有機骨架的設計、合成、光譜和螢光特性探討
13. 有機催化
14. 1.富烯與醯氯化合物進行氧化加成反應的研究2.利用固相合成法進行雜代[6+3]環化加成反應合成11-雜原子雜原子類固醇骨架的研究
15. 西藏東緣鮮水河斷層形成時間與貢嘎山花崗岩體的形成時間及其剝蝕歷史