跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 07:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林文棚
研究生(外文):Lin, Wen-Peng
論文名稱:1.以穩定同位素稀釋奈升流速奈電噴灑游離串聯式質譜法分析人體中外環性DNA加成產物以及血紅蛋白之加成產物. 2.利用硝基酪胺酸免疫親和性管柱搭配奈升流速奈電噴灑游離串聯式質譜法分析唾液蛋白的硝化與亞硝化轉譯後修飾
論文名稱(外文):1.Quantification Of Exocyclic DNA Adducts And Hemoglobin Adduct In Human By NanoLC-NSI/MS/ MS.2.Post-translational Nitration And Nitrosylation Of Human Salivary Proteins Identified By 3-NT Immunoaffinity Column coupled with nanoLC-NSI/MS/MS
指導教授:陳皓君
指導教授(外文):Chen, Hauh-Jyun Candy
口試委員:王少君陳皓君魏國佐陳玉如賴建成
口試委員(外文):Wang, Shau-ChunChen, Hauh-Jyun CandyWei, Guor-TzoChen, Yu-Ju.Lai, Chien-Chen
口試日期:2012-07-26
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:227
中文關鍵詞:奈升流速液相層析奈電噴灑游離串聯式質譜法
外文關鍵詞:nanoLC-NSI/MS/MS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
人類的生活環境中充斥著許多對人體有危害性的具反應性化學物質,當這些具反應性的化學物質進入生物體中,會與去氧核醣核酸或是蛋白質等生物分子進行反應,形成不同修飾結果並造成生物分子的損傷,例如DNA與蛋白質的加成產物以及蛋白質的轉譯後修飾。其中DNA的損傷可能會導致DNA的結構不穩定、染色體異常、複製時的鹼基配對錯誤等突變情況,甚至會引起癌症等疾病的發生;至於蛋白質的轉譯後修飾則會導致蛋白質功能喪失影響細胞功能,在疾病過程中扮演著重要的角色。除了外生性的來源外,氧化壓力所誘導的脂質過氧化過程中亦會生成類似的危害物質,是重要的內生性來源。為了瞭解DNA或蛋白質的損傷與疾病之相關性,必須在不同的疾病過程中針對這些生物分子的損傷進行定性與定量分析,才能找出與疾病相關之生物指標。然而不管是DNA、蛋白質加成產物或是蛋白質轉譯後修飾在人體中的含量皆非常的微量,加上生物樣品極為珍貴不容易取得,因此極需要高靈敏度與高準確度的分析儀器來進行低微量分析物之準確定量。奈升流速液相層析奈電噴灑游離串聯式質譜法 (簡稱nanoLC-NSI/MS/MS)的問世解決了微量分析之靈敏度與準確度的問題,隨著液相層析儀分析管柱內徑的微小化,降低了樣品需求;而質譜儀的發展中,奈電噴灑游離源改進了電噴灑游離時分析物離化效率低的問題,加上串聯式質譜儀的使用,搭配高特異性之選擇反應偵測的分析模式 (簡稱SRM),使得nanoLC-NSI/MS/MS的分析系統提供了高靈敏度與高準確性的優點。在本論文所描述的研究中,可劃分成三個部分。第一個部分是針對人體DNA中由丙烯醛、丁烯醛與具反應性環氧化物所反應形成的DNA加成產物;第二部分則是在人類血紅蛋白中分析由乙醛所產生的蛋白質乙基化加成產物;至於第三部分為針對唾液蛋白中硝化與亞硝化等轉譯後修飾的研究。在前兩部分研究中,除了利用nanoLC-NSI/MS/MS的分析系統搭配SRM模式之外,分析流程中也藉由添加穩定同位素內標準品,提升了定量分析的靈敏度與分析過程中分析物的回收率。第三部分中,主要是利用3-硝基酪胺酸免疫親和性管柱,在複雜的唾液樣品中純化出具有硝化與亞硝化的唾液蛋白,經過蛋白質水解過程後利用nanoLC-NSI/MS/MS進行蛋白質的辨識。本論文中著重在分析方法的開發,儘管目前所偵測的生物樣品皆來自於健康的捐贈者,但我們期待此發展之分析技術可以應用在疾病中尋找生物指標,並運用在疾病不同過程中的診斷以及預防。
Human living environment fills with many reactive chemicals, and may react with biological molecules such as DNA or protein. It causes biological molecules damage and forms DNA, protein adducts and post-translational modification of proteins. DNA lesions may lead to the instability of the DNA structure, base pairing mismatching, and even cause the occurrence of cancer. The protein posttranslational modification may result in the protein dysfunction and affects cell function as well as plays an important role in the disease process. In addition to the exogenous source, the endogenous source such as oxidative stress-induced lipid peroxidation process also generate similar reactive chemicals. In order to understand the relationship of DNA or protein damage and disease. It should be done for qualitative and quantitative analysis of these biomolecules damage and identify disease-related biomarker. However, whether DNA, protein adducts or protein posttranslational modification, the content exist in the human body at low levels. In addition, precious biological sample is also not easy to obtain. Nanoflow LC-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) was delevoped to overcome the problem. With decreasing diameter of the analytical column reduce the sample requirements and the development of the mass spectrometer, nanospray ionization source improve the low efficiency of analyte ionization on conventional electrospray ionization. In addition, coupling with the selective reaction monitoring (SRM) promote high sensitivity and high accuracy on nanoLC-NSI/MS/MS analysis system. In the paper, the study can be divided into three parts. The first part is simultaneous detection and quantification of exocyclic DNA adducts in human placenta, leukocytes and saliva DNA; The second part is measuring the stable N-terminal N-ethylvaline (Et-Val) hemoglobin adduct after hydride reduction of the unstable Schiff base adduct. The third part is posttranslational modification study of nitration and nitrosation in salivary proteins. In addition to nanoLC-NSI/MS/MS analysis system with the SRM mode, the isotope internal standards were added in samples enhancing the accurate analysis and analytes recovery at previous two parts of study. For third part, a 3-nitrotyrosine immunoaffinity column was used to isolate nitrated and nitrosylated salivary proteins prior to desalting and trypsin digestion. The peptides were analyzed on a nanoflow liquid chromatography nanospray linear ion trap mass spectrometry and SEQUEST database searching to identify the sequence and modification sites. These paper focuses on the development of analytical methods. Although the use of biological samples were from healthy donors, but we expect that these analytical techniques can be applied to find noninvasive biomarkers for DNA and protein damage resulting from oxidative stress and for evaluating their roles in disease formation and prevention.
章節目錄
Abstract 1
總摘要 3
第一部分 5
以穩定同位素稀釋奈升流速奈電噴灑游離串聯式質譜法分析人類胎盤、白血球與唾液DNA中多個外環性加成產物 5
Abstract 6
中文摘要 8
第一章、緒論 10
1-1. 去氧核糖核酸介紹 10
1-2. 丙烯醛來源與DNA加成產物AdG形成 13
1-3. 丁烯醛的來源與DNA加成產物CdG 15
1-4. 外環性乙烯基DNA加成產物的形成 17
1-5. 文獻中AdG、CdG與乙烯基DNA加成產物的分析方法 20
1-6. 本研究之實驗方法流程 27
第二章、儀器、材料與實驗方法 29
2-1. 儀器 29
2-2. 藥品 30
2-3. 材料 31
2-3-1. 液相層析管柱 31
2-3-2. 其他材料 31
2-4. 高效能液相層析儀搭配光電二極體陣列式檢測器的分析條件 31
2-5-1. AdG與CdG的合成 32
2-5-2. [15N5]AdG與[15N5]CdG的合成 32
2-6. 以nanoLC-NSI/MS/MS偵測人類胎盤與白血球DNA中的AdG與CdG之實驗步驟與儀器設定 32
2-6-1. 人類血液中萃取白血球DNA步驟 32
2-6-2. DNA水解步驟 33
Method A 33
Method B 34
Method C 34
Method D 34
Method D1與Method D2 35
2-6-3. 利用C18固相萃取管柱收集DNA水解溶液中AdG及CdG之條件 35
2-6-4. 奈升液相層析奈電噴灑游離串聯式質譜儀分析條件 35
2-6-4-1. 奈升流速液相層析儀條件設定 36
系統一 36
系統二 36
2-6-4-2. TSQ-EMR質譜儀系統條件 36
2-6-5. 製作校正曲線 37
2-6-6. 以標準添加法所進行之分析方法準確度確認 37
2-7. 以nanoLC-NSI/MS/MS偵測人類唾液DNA中的AdG、CdG、εdAdo、εdCyd與1,N2-εdGuo之實驗步驟與儀器設定 37
2-7-1. 人類唾液中萃取唾液DNA步驟 37
2-7-2. 唾液DNA水解步驟 38
2-7-3. 利用C18固相萃取管柱收集唾液DNA水解溶液中AdG、CdG、εdAdo、εdCyd與1,N2-εdGuo等五個加成產物之條件 39
2-7-4. 奈升流速液相層析奈電噴灑游離串聯質譜儀分析條件(nanoLC/nanoESI/MS/MS) 39
2-7-4-1. nanoLC系統條件 40
2-7-4-2. 質譜儀系統條件 40
2-7-4-3. 奈升電噴灑所使用的尖端毛細管製作流程 41
2-7-5. 校正曲線的製作 41
2-7-6. 以標準添加法所進行之分析方法準確度確認 42
2-7-7. 利用H-SRM的條件2進行定量以確認分析方法之準確度 42
2-7-7-1. AdG、εdAdo、εdCyd以及1,N2-εdGuo與其對應之同位素標準品的H-SRM條件 42
2-7-7-2. 分析方法確認實驗之校正曲線的製作 43
2-7-8. 統計學分析 43
第三章、實驗結果與討論 44
3-1. 標準品的合成與定性實驗 44
3-1-1. AdG與CdG標準品合成與定性 44
3-1-2. 乙烯基標準品定性質譜圖譜 45
3-2. 利用奈升流速液相層析奈電噴灑游離串聯式質譜法在人類胎盤與白血球DNA中分析AdG與CdG 46
3-2-1. 分析方法的建立 46
3-2-2. 比較不同的奈升流速/毛細管液相層析之分析管柱與沖提條件對[15N5]AdG及[15N5]CdG標準品訊號強度與分離效果的影響 46
3-2-3. 比較不同的水解條件對人類胎盤DNA中AdG及CdG水解含量的影響 49
3-2-4. AdG與CdG在nanoLC-NSI/MS/MS 分析系統的靈敏度 51
3-2-5. 測定分析AdG與CdG系統之精確度與準確度 54
3-2-6. 以nanoLC-NSI/MS/MS 定量人類胎盤與白血球DNA中的AdG與CdG 55
3-3. 以奈升液相層析奈電噴灑游離串聯式質譜法分析唾液DNA中五個外環性DNA加成產物 58
3-3-1. 方法的建立 58
3.3-2. 唾液中的DNA萃取 60
3-3-3. DNA酵素水解的最佳化 62
3-3-4. AdG與CdG在nanoLC-NSI/MS/MS 分析系統的靈敏度 63
3-3-5. 實驗方法的精密度與準確度確認 65
3-3-6. 利用nanoLC-NSI/MS/MS在唾液DNA中定量五個加成產物 69
3-3-7. 唾液DNA中五個加成產物含量之間的相關性分析 74
第四章、結論 77
第二部份 79
以穩定同位素稀釋搭配奈升流速液相層析奈電噴灑游離串聯式質譜法分析人類血紅蛋白氮端經乙醛反應後之乙基纈胺酸加成產物 79
Abstract 80
中文摘要 81
第五章、緒論 82
5-1. 文獻中關於血紅蛋白加成產物的研究介紹 82
5-2. 乙基化血紅蛋白加成產物的來源 84
5-3. Modified Edman reaction 87
5-4. 本研究的方法介紹 91
第六章、儀器、材料、藥品與實驗方法 93
6-1. 儀器 93
6-2. 藥品 94
6-3. 材料 94
6-4. 高效能液相層析儀的分析條件 95
6-5. 實驗步驟 95
6-5-1. Et-Val及Et-VLSPAD的合成 95
6-5-2. [13C5,15N1]Et-Val 與[13C5]Et-VLSPAD的合成 95
6-5-3. C18固相管柱純化[13C5,15N1]Et-Val與[13C5]Et-VLSPAD標準品的條件 96
6-5-4. 血液的取得與血紅蛋白的萃取方法 96
6-5-4-1. 從血液取出紅血球 97
6-5-4-2. 從紅血球中純化出血球蛋白 97
6-5-5. 螢光儀定量萃取出的血球蛋白 97
6-5-6. 還原Schiff base與Modified Edman reaction 98
6-5-7. 利用C18固相萃取管柱收集Et-Val-PTH之條件 98
6-5-8. 製作校正曲線 99
6-5-8-1. 以Et-Val與[13C5,15N1]Et-Val所製作之校正曲線 99
6-5-8-2. 以Et-VLSPAD與 [13C5]Et-VLSPAD所製作的校正曲線 99
6-5-9. 以標準添加法進行準確度確認 99
6-6. 奈升流速液相層析奈電噴灑游離串聯式質譜儀分析條件 100
6-6-1. 分析系統一 (用於定量人類血紅蛋白中Et-Val使用): 100
6-6-2. 分析系統二 (用於方法確認使用) 100
第七章、結果討論 102
7-1. 分析方法的建立 102
7-2. Et-Val與[13C5,15N1]Et-Val的合成反應與定性圖譜 102
7-3. Et-Val-PTH與[13C5,15N1]Et-Val-PTH的定性圖譜以及SRM條件的設定 103
7-4. 利用nanoLC-NSI/MS/MS分析Et-Val-PTH與[13C5,15N1]Et-Val-PTH靈敏度 104
7-5. 以螢光光譜儀定量從人類血液中萃取出的血紅蛋白 105
7-6. 定量Et-Val系統之精密度與準確度 107
7-7. 以nanoLC-NSI/MS/MS分析系統一定量人類血紅蛋白中的Et-Val 109
7-8. 分析方法的確認 111
7-8-1. 利用胜肽[13C5]VLSPAD取代[13C5,15N1]Et-Val當作內標準品的定量 112
7-8-2. 萃取血紅蛋白流程中添加環原劑NaBH3CN 117
第八章、結論 119
第三部份 120
以硝基酪胺酸免疫親和性管柱搭配奈升流速奈電噴灑游離串聯式質譜法分析唾液蛋白之硝化與亞硝化的轉譯後修飾 120
Abstract 121
中文摘要 122
第九章、緒論 123
9-1. 蛋白質的硝化與疾病的相關性 123
9-2. 3-NT蛋白質的形成機制 124
9-3. 3-NT蛋白質的分析方法 130
9-4. 本研究分析方法的建立 135
第十章、儀器、材料、藥品與實驗方法 137
10-1. 儀器 137
10-2. 藥品與材料 137
10-3. 實驗步驟 138
10-3-1. 唾液前處理 138
10-3-2. 唾液蛋白定量方法 138
10-3-3. 硝基酪胺抗體之免疫沈澱管柱製備 139
10-3-3-1. 抗體與Protein A/G之鍵結 139
10-3-3-2. 3-NT之免疫沉澱 139
10-3-3-3. 3-NT的沖提 140
10-3-4. 唾液蛋白的除鹽與濃縮步驟 140
10-3-5.唾液蛋白質的水解 141
10-4. 奈升液相層析奈噴灑游離串聯質譜儀分析條件 141
10-4-1. 液相層析系統條件 141
10-4-2. 質譜儀全質譜掃瞄模式條件 142
10-4-3 質譜儀資料依歸掃瞄模式條件 142
第十一章、實驗結果與討論 143
11-1. 唾液樣品的前處理 143
11-2. 唾液蛋白的定量 143
11-3. 利用3-硝基酪胺抗體之免疫沈澱管柱純化唾液中的硝化蛋白 143
11-4. 利用Nanosep 離心裝置進行除鹽 144
11-5. 以nanoLC-NSI/MS/MS進行唾液硝化與亞硝化蛋白的鑑定 145
第十二章、結論 153
第十三章、參考文獻 154
第十四章、實驗附圖 176
中英對照表 206
英文縮寫對照表 212


1.Ames, B. N.; Gold, L. S. Endogenous mutagens and the causes of aging and cancer. Mutat. Res. 1991, 250, 3-16.
2. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 1993, 362, 709-715.
3. Christians, F. C.; Newcomb, T. G.; Loeb, L. A. Potential sources of multiple mutations in human cancers. Pre vent. Med. 1995, 24, 329-332.
4. Chen, H.-J. C. Formation, analysis and repair of exocyclic etheno DNA adducts. Chin. Pharm. J. 2004, 56, 1-16.
5.Biswal, S.; Maxwell, T.; Rangasamy, T.; Kehrer, J. P. Modulation of benzo[a]pyrene-induced p53 DNA activity by acrolein. Carcinogenesis 2003, 24, 1401-1406.
6.Uchida, K.; Kanematsu, M.; Morimitsu, Y.; Osawa, T.; Nohuchi, N.; Niki, E. Acrolein Is a Product of Lipid Peroxidation Reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J. Biol. Chem. 1998, 273, 16058-16066.
7.Kern, J. C.; Kehere, J. P. Acrolein-induced cell death: a caspase-influenced decision between apoptosis and oncosis/necrosis. Chem. Bio. Interact. 2002, 139, 79-95.
8.Cohen, S. M.; Garland, E. M.; John, St. M.; Okamura, T.; Smith, R. A. Acrolein initiates rat urinary bladder carcinogenesis1. Cancer Res. 1992, 52, 3577-3581.
9.Picklo, M.; Montine, T.J. Acrolein inhibits respiration in isolated brain mitochondria. J. Biochim. Biophys. Acta 2001, 1535, 145-152.
10.Marnett, L. J.; Hurd, H. K.; Hollstein, M. C.; Levin, D. E.; Esterbauer, H.; Ames, B. N. Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat. Res. 1985, 148, 25-34.
11. Curren, R. D.; Yang, L. L.; Conklin, P. M.; Grafstrom, R. C.; Harris, C. C. Mutagenesis of xeroderma pigmentosum fibroblasts by acrolein. Mutat. Res. Lett. 1988, 209, 17-22.
12. Yang, I.-Y.; Chan, G.; Miller, H.; Huang, Y.; Torres, M. C.; Johnson, F.; Moriya, M. Mutagenesis by acrolein-derived propanodeoxyguanosine adducts in human cells. Biochemistry 2002, 41, 13826-13832.
13. Furuhata, A.; Ishii, T.; Kumazawa, S.; Yamada, T.; Nakayama, T.; Uchida, K. N (epsilon)-(3-Methylpyridinium)lysine, a major antigenic adduct generated in acrolein-modified protein. J. Bio. Chem. 2003, 278, 48658-48665.
14. Cai, J.; Bhatnagar, A.; M, W.; Jr, P. Protein modification by acrolein : formation and stability of cysteine adducts. Chem. Res. Toxicol. 2009, 22, 708-716.
15. Carmella, S. G.; Chen, M.; Zhang, Y.; Zhang, S.; Hatsukami, D. K.; Hecht, S. S. Quantitation of acrolein-derived 3-hydroxypropyl- mercapturic acid in human urine by liquid chromatography–atmospheric pressure chemical ionization-tandem mass spectrometry: effects of cigarette smoking. Chem. Res. Toxicol. 2007, 20, 986-990.
16. Boerth, D. W.; Eder, E.; Hussain, S.; Hoffman, C. Structures of acrolein-guanine adducts: a semi-empirical self-consistent field and nuclear magnetic resonance spectral study. Chem. Res. Toxicol. 1998, 11, 284-294.
17. Kawai, Y.; Furuhata, A.; Toyokuni, S.; Aratani, Y.; Uchida, Y.; Uchida, K. Formation of acrolein-derived 2’-deoxyadenosine adduct in an iron-induced carcinogenesis model. J. Bio. Chem. 2003, 278, 50346-50354.
18. Cheng, G.; Shi, Y.; Sturla, S. J. R.; McIntee, E. J,; Villalta, P. W.; Wang, M.; Hecht, S. S. Reactions of formaldehyde plus acetaldehyde with deoxyguanosine and DNA: formation of cyclic deoxyguanosine adducts and formaldehyde cross-links. Chem. Res. Toxicol. 2003, 16, 145-152.
19. Smith, R. A.; Williamson, D. S.; Cohen, S. M. Identification of 3,N4-propanodeoxycytidine 5’-monophosphate formed by the reaction of acrolein with deoxycytidine 5’-monophosphate. Chem. Res. Toxicol. 1989, 2, 267-271
20. Kozekov, I. D.; Nechev, L. V.; Sanchez, A.; Harris, C. M.; Lloyd, R. S.; Harris, T. M. Interchain cross-linking of DNA mediated by the principal adduct of acrolein. Chem. Res. Toxicol. 2001, 14, 1482-1485.
21. Nath, R. G.; Ocando, J. E.; Guttenplan, J. B.; Chung, F-L. 1,N2-Propanodeoxyguanosine adducts: potential new biomarkers of smoking induced DNA damage in human oral tissue. Cancer Res. 1998, 58, 581-584.
22. Liu, X.; Lovell, M. A.; Lynn, B. C. Development of a method for quantification of acrolein−deoxyguanosine adducts in DNA using isotope dilution-capillary LC/MS/MS and its application to human brain tssue. Anal. Chem. 2005, 77, 5982-5989.
23. Kozekov, I. D.; Nechev, L. V.; Moseley, M. S.; Harris, C. M.; Rizzo, C. J.; Stone, M. P.; Harris, T. M. DNA interchain cross-links formed by acrolein and crotonaldehyde. J. Am. Chem. Soc. 2003, 125, 50-61.
24. Vickroy, D. G. The characterization of cigarette smoke from cytrel smoking products and its comparison to smoke from flue-cured tobacco. I. vapor phase analysis. Beitr. Tabakforsch. 1976, 8, 415.
25. Chung, F. L.; Chen, H. J.; Nath, R. G. Lipid peroxidation as a potential endogenous source for theformation of exocyclic DNA adducts. Carcinogenesis 1996, 17, 2105-2111.
26.Neudecker, T.; Eder, E.; Deininger, C.; Henschler, D. Crotonaldehyde is mutagenic in Salmonella typhimurium TA100. EnViron. Mol. Mutagen.1989, 14, 146-148.
27. Chung, F. L.; Tanaka, T.; Hecht, S. S. Induction of liver tumors in F344 rats by crotonaldehyde. Cancer Res. 1986, 46, 1285-1289.
28. Chung, F. L.; Young, R.; Hecht, S. S. Formation of cyclic 1,N2-propanodeoxyguanosine adducts in DNA upon reaction with acrolein or crotonaldehyde. Cancer Res.1984, 44, 990-995.
29. Zhang, S.; Villalta, P. W.; Wang, M.; Hecht, S. S. Analysis of crotonaldehyde- and acetaldehyde-derived1,N2-propanodeoxy -guanosine adducts in DNA from human tissues using liquid chromatography electrospray ionization tandem mass spectrometry. Chem. Res. Toxicol. 2006, 19, 1386-1392
30. Chung, F. L.; Nath, R. G.; Nagao, M.; Nishikawa, A.; Zhou, G. D.; Randerath, K. Endogenous formation and significance of 1,N2-propanodeoxyguanosine adducts. Mutat. Res. 1999, 424, 71-81.
31. Wang, M.; McIntee, E. J.; Cheng, G.; Shi, Y.; Villalta, P. W.; Hecht, S. S. Identification of paraldol-deoxyguanosine adducts in DNA reacted with crotonaldehyde. Chem. Res. Toxicol. 2000, 13, 1065-1074.
32. Wang, M.; McIntee, E. J.; Cheng, G.; Shi, Y.; Villalta, P. W.; Hecht, S. S. Identification of DNA adducts of acetaldehyde. Chem. Res. Toxicol. 2000, 13, 1149-1157.
33. Cho, Y. J.; Wang, H.; Kozekov, I. D.; Kurtz, A. J.; Jacob, J.; Voehler, M.; Smith, J.; Harris, T. M.; Lloyd, R. S.; Rizzo, C. J.; Stone, M. P. Stereospecific formation of interstrand carbinolamine DNA cross-links by crotonaldehyde- and acetaldehyde-derived α-CH3-γ-OH- 1,N2-propano-2’-deoxyguanosine adducts in the 5’-CpG-3’ sequence. Chem. Res. Toxicol. 2006, 19, 195-208.
34. Creech, J. L. Jr.; Johnson, M. N. Angiosarcoma of liver in the manufacture of polyvinyl chloride. J. Occup. Med. 1974, 16, 150-151.
35. Battaglia, R.; Conacher, H. B. S.; Page, B. D. Ethyl carbamate (urethane) in alcoholic beverages and foods: a review. Food Addit. Contam. 1990, 7, 477-496.
36. Keonberg, L.; Sjöholm, R.; Karlesson, S. Formation of 3, N4-ethenocytidine, 1,N6-ethenoadenosine, and 1,N2-etheno-quanosine in reaction of mucochloric acid with nucleosides. Chem. Res. Toxicol. 1992, 5, 852-855.
37. Guengerich, F. P.; Crawford, W. M. Jr.; Watanabe, P. G. Activation of vinyl chloride to covalently bound metabolites: roles of 2-chloro-ethylene oxide and 2-chloroacetadehyde. Biochemistry. 1979, 18, 5177-5182.
38. Swenberg, J. A.; Fedtke, N.; Ciroussel, F.; Barbin, A.; Bartsch, H. Etheno adducts formed in DNA of vinyl chloride-exposed rats are highly persistent in liver. Carcinogenesis 1992, 13, 727-729.
39. Fernando, R. C.; Nair, J.; Barbin, A.; Miller, J. A.; Bartsch, H. Detection of 1,N6-ethenodeoxy-adenosine and 3,N4-ethenodeoxy-cytidine by immunoaffinity/32P-postlabelling in liver and lung DNA of mice treated with ethyl carbamate (urethane) or its metabolites. Carcinogenesis, 1996, 17, 1711-1718.
40. Chung, F.-L.; Chen, H.-J. C. Formation of etheno adducts in reaction of enals via autoxidation. Chem. Res. Toxicol. 1994, 7, 857-860.
41. Chen, H.-J. C.; Chung, F.-L. Epoxidation of trans-4-hydroxy- 2-nonenal by fatty acid hydro-peroxides and hydrogen peroxide. Chem. Res. Toxicol. 1996, 9, 306-312.
42. Chung, F.-L.; Chen, H.-J. C.; Guttenplan, J. B.; Nishikawa, A.; Hard, G. C. 2,3-Epoxy-4-hydroxynonanal as a potential tumor-initiating agent of lipid peroxidation. Carcinogenesis 1993, 14, 2073-2077.
43.Chen, H.-J. C.; Gonzalez, F. J.; Shou, M.; Chung, F.-L. 2,3-Epoxy-4-hydroxynonanal, a potential lipid peroxidation product for ethenoadduct formation, is not a substrate of human epoxide hydrolase. Carcinogenesis, 1998, 19, 939-943.
44.Nair, J.; Barbin, A.; Guichard, Y.; Bartsch, H. 1,N6-Ethenodeoxy-adenosine and 3,N4-ethenodeoxycytidine in liver DNA from humans and untreated rodents detected by immunoaffinity/32P-postlabeling. Carcinogenesis 1995, 16, 613- 617.
45. Nair, J.; Barbin, A.; Velic, I.; Bartsch, H. Etheno DNA-base adducts from endogenous reactive species. Mutat. Res. 1999, 424, 59-69.
46.Nair, J.; Sone, H.; Nagao, M.; Barbin, A.; Bartsch, H. Cop per-dependent for ma tion of miscoding etheno-DNA ad ducts in the liver of Long Evans Cinnamon (LEC) rats developing hereditary hepatitis and hepatocellular carcinoma. Cancer Res. 1996, 56, 1267-1271.
47. Nair, J.; Carmichael, P. L.; Fernando, R. C.; Phillips, D. H.; Strain, A. J.; Bartsch, H. Lipid peroxidation-induced etheno-DNA adducts in the liver of patients with the genetic metal storage disorders Wilson's disease and primary hemochromatosis. Cancer Epidemiol. Biomarkers Prev. 1998, 7, 435-440.
48. Nair, J.; Vaca, C. E.; Velic, I.; Mutanen, M.; Valsta, L. M.; Bartsch, H. High dietary omega- 6 poly unsaturated fatty acids drastically increase the formation of etheno-DNA base adducts in white blood cells of female subjects. Cancer Epidemiol. Biomarkers Prev. 1997, 6, 597-601.
49. Schmid, K.; Nair, J.; Winde, G.; Velic, I.; Bartsch, H. Increased levels of promutagenic etheno-DNA adducts in colonic polyps of FAP patients. Int. J. Cancer 2000, 87, 1-4.
50. Bartsch, H.; Nair, J. New DNA-based biomarkers for oxidative stress and cancer chemoprevention studies. Eur. J. Cancer 2000, 36,1229-1234.
51.Bartsch, H.; Nair, J.; Owen, R. W. Exocyclic DNA adducts as oxidative stress markers in colon carcinogenesis: potential role of lipid peroxidation, dietary fat and antioxidants. Biol. Chem. 2002, 383, 915-921.
52.Moriya, M.; Zhang, W.; Johnson, F.; Grollman, A. P. Mutagenic potency of exocyclic DNA adducts: marked differences between Escherichiacoli and simian kidney cells. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 11899-11903.
53.Pandya, G. A.; Moriya, M. 1,N6-ethenodeoxyadenosine, a DNA adduct highly mutagenic in mammalian cells. Biochemistry 1996, 35, 11487- 11492.
54.Cheng, K. C.; Preston, B. D.; Cahill, D. S.; Dosanjh, M. K.; Singer, B.; Loeb, L. A. The vinyl chloride DNA derivative N2,3-ethenoguanine produced G→A transitions in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 9974-9978.
55.Akasaka, S.; Guengerich, F. P. Mutagenicity of site-specifically located 1,N2-ethenoguanine in Chinese hamster ovary cell chromosomal DNA. Chem. Res. Toxicol. 1999, 12, 501-507.
56.Reddy, V.; Randerath, K. 32P-Postlabeling assay for carcinogen-DNA adducts: nuclease P1-mediated enhancement of its sensitivity and applications. Environ. Health Perspect. 1987, 76, 41-47.
57.Nair, U.; Bartsch, H.; Nair, J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: A review of published adduct types and levels in humans. Free Radical Biol. Med. 2007, 43, 1109-1120.
58.Randerath, K.; Li, D.; Nath, R.; Randerath, E. Exogenous and endogenous DNA modifications as monitored by 32P-postlabeling: relationships to cancer and aging. Exp. Gerontol. 1992, 27, 533-549.
59.Nath, R. G.; Chung, F. L. Detection of exocyclic 1,N2-propano-deoxyguanosine adducts as common DNA lesions in rodents and humans. Proc. Nadl. Acad. Sci. USA, 1994, 91, 7491-7495.
60.Dizdaroglu, M.; Gajewski, E. Selected-ion mass spectrometry: assays of oxidative DNA damage. Methods Enzymol. 1990, 186, 530-544.
61.Giese, R. W. Detection of DNA adducts by electron capture mass spectrometry. Chem. Res. Toxicol 1997, 10, 255-270.
62.Zhang, S.; Villalta, P. W.; Wang, M. ; Hecht, S. S. Detection and quantitation of acrolein-derived 1,N2-propanodeoxyquanosine adducts in human lung by liquid chromatography-electrospray ionization -tandem mass spectrometry. Chem. Res. Toxicol. 2007, 20, 565-571.
63.Fedtke, N.; Boucheron, J. A.; Walker, V. E.; Swenberg, J. A. Vinyl chloride-induced DNA adducts. II: Formation and persistence of 7-(2’-oxo¬ethyl)¬¬guanine and N2,3-ethenoguanine in rat tissue DNA. Carcinogenesis 1990, 11, 1287- 1292.
64.Chen, H.-J. C.; Zhang, L.; Cox, J.; Cunningham, J. A.; Chung, F.-L. DNA adducts of 2,3-epoxy-4-hydroxynonanal: Detection of 7-(1’,2-dihydroxy-heptyl)-3H-imidazo[2,1,i]-purine and 1,N6-etheno-adenine by gas chromatography/negative ion chemical ion ization/mass spectrometry. Chem. Res. Toxicol. 1998, 11, 1474-1480.
65.Chen, H.-J. C.; Chiang, L.-C.; Tseng, M.-C.; Zhang, L. L.; Ni, J.; Chung, F.-L. Detection and quantification of 1,N6-ethenoadenine in human placental DNA by mass spectrometry. Chem. Res. Toxicol. 1999, 12, 1119-1126.
66.Chen, H.-J. C.; Chang, C.-M. Quantification of urinary excretion of 1,N6-ethenoadenine, a potential biomarker of lipid peroxidation, in humans by stable isotope dilution liquid chromatography/electrospray ionization-tandem mass spectrometry: comparison with gas chromatography-mass spectrometry. Chem. Res. Toxicol. 2004, 17, 963-971.
67.Chen, H.-J. C.; Lin, T.-C.; Hong, C.-L.; Chiang, L.-C. Analysis of 3,N4-ethenocytosine in DNA and in human urine by isotope dilution gas chromatography/negative ion chemical ionization/mass spectrometry. Chem. Res. Toxicol. 2001, 14, 1612-1619.
68.Chen, H.-J. C.; Hong, C.-L.; Wu, C.-F.; Chiu, W.-L. Effect of cigarette smoking on urinary 3,N4-ethenocytosine levels measured by gas chromatography/mass spectrometry. Toxicol. Sci. 2003, 76, 321-327.
69.Chen, H.-J. C.; Wu, C.-F.; Hong, C.-L.; Chang, C.-M. Urinary excretion of 3,N4-etheno-2’-deoxycytidine as a biomarker of oxidative stress: association with cigarette smoking. Chem. Res. Toxicol. 2004, 17, 896–903.
70.Chen, H.-J. C.; Chang, C.-M. Quantification of urinary excretion of 1,N6-ethenoadenine, a potential biomarker of lipid peroxidation, in humans by stable isotope dilution liquid chromatography/electrospray ionization-tandem mass spectrometry: Comparison with gas chromatography-mass spectrometry. Chem. Res. Toxicol. 2004, 17, 963-971.
71.Chen, H.-J. C.; Chiu, W. L. Association between cigarette smoking and urinary excretion of 1,N2-ethenoguanine measured by isotope dilution liquid chromatography/¬electrospray ionization-tandem mass spectrometry Chem. Res. Toxicol. 2005, 18, 1593-1599.
72.Chen, H.-J. C.; Lin, G.-J.; Lin, W.-P. Simultaneous quantification of three lipid peroxidation-derived etheno adducts in human DNA by stable isotope dilution nanoflow liquid chromatography nanospray ionization tandem mass spectrometry. Anal. Chem. 2010, 82, 4486–4493.
73.Klinkhamer, J. M. Human oral leukocytes. J. Am. Soc. Periodontists 1963, 1, 109–117.
74.Osswald, K.; Mittas, A.; Glei, M.; Pool-Zobel, B. L. New revival of an old biomarker: characterisation of buccal cells and determination of genetic damage in the isolated fraction of viable leucocytes. Mutat. Res. 2003, 544, 321–329.
75.Schwartz, J. L.; Muscat, J. E.; Baker, V.; Larios, E.; Stephenson, G. D.; Guo, W.; Xie, T.; Gu, X.; Chung, F. L. Oral cytology assessment by flow cytometry of DNA adducts, aneuploidy, proliferation and apoptosis shows differences between smokers and nonsmokers. Oral Oncol. 2003, 39, 842–854.
76.Bessette, E.; Spivack, S. D.; Goodenough, A. K.; Wang, T.; Pinto, S.; Kadlubar, F. F.; Turesky, R. J. Identification of carcinogen DNA adducts in human saliva by linear quadrupole ion trap/multistage tandem mass spectrometry. Chem. Res. Toxicol. 2010, 23, 1234–1244.
77.Walsh, D. J.; Corey, A. C.; Cotton, R. W.; Forman, L.; Herrin, G. L., Jr.; Word, C. J.; Garner, D. D. Isolation of deoxyribonucleic acid (DNA) from saliva and forensic science samples containing saliva. J. Forensic Sci. 1992, 37, 387–395.
78.Lum, A.; Le Marchand, L. A simple mouthwash method for obtaining genomic DNA in molecular epidemiological studies. Cancer Epidemiol., Biomarkers Prev. 1998, 7, 719–724.
79.Yokoyama, A.; Muramatsu, T.; Ohmori, T.; Yokoyama, T.; Okuyama, K.; Takahashi, H.; Hasegawa, Y.; Higuchi, S.; Maruyama, K.; Shirkura, K.; Ishii, H. Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics. Carcinogenesis 1998, 19, 1383-1387.
80.Chen, H-J. C.; Lin, W.-P. Simultaneous quantification of 1,N2-propano-2′-deoxyguanosine adducts derived from acrolein and crotonaldehyde in human placenta and leukocytes by isotope dilution nanoflow LC nanospray ionization tandem mass spectrometry. Anal. Chem. 2009, 81, 9812–9818.
81.Chen, H-J. C.; Lin, W-P. Quantitative analysis of multiple exocyclic DNA adducts in human salivary DNA by stable isotope dilution nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry. Anal. Chem. 2011, 83, 8543–8551
82.Hagmar, L.; Welinder, H.; Lindén, K.; Attewell, R.; Osterman-Golkar, S.; Törnqvist, M. An epidemiological study of cancer risk among workers exposed to ethylene oxide using hemoglobin adducts to validate environmental exposure assessments. Int. Arco. Occup. Environ. Health 1991, 63, 271-277.
83.Walker, V. E.; MacNeela, J. P.; Swenberg, J. A.; Turner, M. J.; Jr., Fennell, T. R. Molecular dosimetry of ethylene oxide: formation and persistence of N-(2-hydroxyethyl)valine in hemoglobin following repeated exposures of rats and mice. Cancer Res. 1992, 52, 4320-4327.
84.Lawrence, R. M.; Sweetman, G. M. A.; Tavares, R.; Farmer, P. B. Synthesis and characterization of peptide adducts for use in monitoring human exposure to acrylonitrile and ethylene oxide. Teratogenesis, Carcinogenesis, and Mutagenesis 1996, 16, 139-148.
85.Bono, R.; Vincenti, M.; Meineri, V.; Pignata, C.; Saglia, U.; Giachino, O.; Scursatone, E. Formation of N-(2-hydroxyethyl)valine due to exposure to ethylene oxide via tobacco smoke: a risk factor for onset of cancer. Environ. Res. Section A. 1999, 81, 62-71.
86.Osterman-Golkar, S. M.; MacNeela, J. P.; Turner, M. J.; Walker, V. E.; Swenberg, J. A.; Sumner, S. J.; Youtsey, N.; Fennell, T. R. Monitoring exposure to acrylonitrile using adducts with N-terminal valine in hemoglobin. Carcinogenesls, 1994, 15, 2701-2707.
87.Bergmark, E. Hemoglobin adducts of acrylamide and acrylonitrile in laboratory workers, smokers and nonsmokers. Chem. Res. Toxicol. 1997, 10, 78-84.
88.Pérez, H. L.; Segerbäck, D.; Osterman-Golkar, S. Adducts of acrylonitrile with hemoglobin in nonsmokers and in participants in a smoking cessation program. Chem. Res. Toxicol., 1992, 12, 869-873.
89.Fennell, T. R.; Snyder, R. W.; Krol, W. L.; Summer, S. C. J. Comparison of the hemoglobin adducts formed by administration of N-methylolacrylamide and acrylamide to rats. Toxicol. Sci. 2003, 71, 164–175.
90.Vesper, H. W.; Ospina, M.; Meyers, T.; Ingham, K.; Smith, A.; Gray, G.; Myers, G. L. Automated method for measuring globin adducts of acrylamide and glycidamide at optimized Edman reaction conditions. Rapid Commun. Mass Spectrom. 2006, 20, 959–964.
91.Chevolleau, S.; Jacques, C.; Canlet, C.; Tulliez, J.; Debrauwer, L. Analysis of hemoglobin adducts of acrylamide and glycidamide by liquid chromatography–electrospray ionization tandem mass spectrometry, as exposure biomarkers in French population. J. Chromatogr. A 2007, 1167, 125-134.
92.Fidder, A.; Noort, D.; de Jong, A. L.; Trap, H. C.; de Jong, L. P. A. Benschop, H. P. Monitoring of in vitro and in vivo exposure to sulfur mustard by GC/MS determination of the N-terminal valine adduct in hemoglobin after a modified Edman degradation. Chem. Res. Toxicol. 1996, 9, 788-792.
93.Carmella, S. G.; Chen, M.; Villalta, P. W.; Gurney, J. G.; Hatsukami, D. K.; Hecht, S. S. Ethylation and methylation of hemoglobin in smokers and nonsmokers. Carcinogenesis 2002, 23, 1903-1910.
94.Maltoni.C, CilibertiA, Cotti.G. and Perino.G. (1987) Experimental research on acrylonltrile carcinogenesis. Princeton Scientific Publishing Co., Princeton, NJ.
95.Byrd, G. D.; Fowler, K. W.; Hicks, R. D.; Lovette, M. E.; Borgerding, M. F. Isotope dilution gas chromatography-mass spectrometry in the determination of benzene, toluene, styrene and acrylonltrile in mainstream cigarette smoke. J. Chromatogr. 1990, 503, 359-368.
96.Maniere, I.; Godard,T.; Doerge, D. R.; Churchwell, M. I.; Guffroy, M.; Laurentie, M.; Poul, J.M. DNA damage and DNA adduct formation in rat tissues following oral administration of acrylamide. Mutation Research 2005, 580, 119–129.
97.Singh, R.; Kaur, B.; Farmer, P. B. Detection of DNA damage derived from a direct-acting ethylating agent present in cigarette smoke by use of liquid chromatography–tandem mass spectrometry. Chem. Res. Toxicol. 2005, 18, 249-256.
98.Chao, M. U.; Wang, C. J.; Chang, L. W.; Hu, C. W. Quantitative determination of urinary N7-ethylguanine in smokers and non-smokers using an isotope dilution liquid chromatography/tandem mass spectrometry with on-line analyte enrichment. Carcinogenesis 2002, 27, 146-151.
99.Zhang, S.; Villalta, P. W.; Wang, M.; Hecht, S. S. Analysis of Crotonaldehyde- and acetaldehyde-derived 1,N2-propanodeoxy- guanosine adducts in DNA from human tissues using liquid chromatography electrospray ionization tandem mass spectrometry. Chem. Res. Toxicol. 2006, 19, 1386-1392.
100.Yokoyama, A.; Muramatsu, T.; Ohmori, T.; Yokoyama, T.; Okuyama, K.; Takahashi, H.; Hasegawa, Y.; Higuchi, S.; Maruyama, K.; Shirkura, K.; Ishii, H. Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics. Carcinogenesis 1998, 19, 1383-1387.
101.Wang, M.; Yu, N.; Chen, L.; Villalta, P. W.; Hochalter, J. B.; Hecht, S. S. Identification of an acetaldehyde adduct in human liver DNA and quantitation as N2-ethyldeoxyguanosine. Chem. Res. Toxicol. 2006, 19, 319-324
102.Bishop, C. L.; Surgenor, D. M. The red blood cell. Academic Press, New York, 1964.
103.Chang, J. Y. A novel Edman-type degradation: direct formation of the thiohydantoin ring in alkaline solution by reaction of Edman-type reagents with N-monomethyl amino acids. FEBS Lett. 1978, 91, 63-68.
104.Törnqvist, M.; Mowrer, J.; Jensen, S.; Ehrenberg, L. Monitoring of environmental cancer initiators through hemoglobin adducts by a modified edman degradation method. Anal. Biochem. 1986, 154, 155-266.
105.Blagoeva, I. B.; Pojarlieff, I. G.; Kirby, A. J. Intramolecular nucleophilic attack on carboxylate by ureide anion. General acid-base catalysis of the alkaline cyclisation of 2,2,3,3-tetramethylhydantoic acid. J. Chem. Soc., Perkin Trans. 1984, 2, 745-751.
106.Blagoeva, I. B.; Pojarlieff, I. G.; Taschev, D. T. Intramolecular nucleophilic attack by urea nitrogen. Reactivity-selectivity relationships for the general acid-base-catalyzed cyclisations of ureido acids and esters. J. Chem. Soc., Perkin Trans. 1989, 2, 347-353.
107.Rydberg, P.; Lüning, B.; Wachtmeister, C. A.; Eriksson, L.; Törnqvist, M. Applicability of a modified edman procedure for measurement of protein adducts: mechanisms of formation and degradation of phenylthiohydantoins. Chem. Res. Toxicol. 2002, 15, 570-581.
108.Chevolleau, S.; Jacques, C.; Canlet, C.; Tulliez, J.; Debrauwer, L. Analysis of hemoglobin adducts of acrylamide and glycidamide by liquid chromatography-electrospray ionization tandem mass spectrometry, as exposure biomarkers in French population. J. Chromatogr. A. 2007, 1167, 125-134.
109.Chiu, F.; Vasudevan, G.; Morris, A,; McDonald, M. J. Fluorescence studies of human semi-beta-hemoglobin assembly Biochem. Biophys. Res. Commun. 1998, 242, 365–368.
110.Zwart, A.; Assendelft, O. W.; Bull, B. S.; England, J. M.; Lewis, S. M.;Zijlstra, W. G. Recommendations for reference method for haemoglobinometry in human blood (ICSH standard 1995) and specifications for international haemiglobincyanide standard (4th edition). J. Clin. Pathol. 1996, 49, 271-274.
111.Boys, B. L.; Konermann, L. Folding and assembly of hemoglobin monitored by electrospray mass spectrometry using an on-line dialysis system. J. Am. Soc. Mass Spectrom. 2007, 18, 8-16.
112.Crespin, M. O.; Boys, B. L.; Konermann, L. The reconstitution of unfolded myoglobin with hemin dicyanide is not accelerated by fly-casting. FEBS Lett. 2005, 579, 271-274.
113.Törnqvist, M.; Magnusson, A. L.; Farmer, P. B.; Tang, Y. S. ; Jeffrey, A. M. ; Wazneh, L.; Beulink, G. D. T.; van der Waal, H.; van Sittert, N. J. Ring test for low levels of N-(2-hydroxyethyl)valine in human hemoglobin. Anal. Chem. 1992, 203, 357-360.
114.Davies, M. J.; Fu, S.; Wang, H.; Dean, R. T. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic. Biol. Med. 1999, 27, 1151–1163.
115.Berlett, B. S.; Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997, 272, 20313–20316.
116.Ischiropoulos, H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 1998, 356, 1–11.
117.Petruzzelli, S.; Puntoni, R.; Mimotti, P.; Pulera, N.; Baliva, F.; Fornai, E.; Giuntini, C. Plasma 3-nitrotyrosine in cigarette smokers. Am. J. Respir. Crit. Care Med. 1997, 156, 1902–1907.
118.Lamb, N. J.; Gutteridge, J. M.; Baker, C.; Evans, T. W.; Quinlan, G. J. Oxidative damage to proteins of bronchoalveolar lavage fluid in patients with acute respiratory distress syndrome: evidence for neutrophil-mediated hydroxylation, nitration, and chlorination. Crit. Care Med. 1999, 27, 1738–1744.
119.Gole, M. D.; Souza, J. M.; Choi, I.; Hertkorn, C.; Malcolm, S.; Foust, 3rd, R. F.; Finkel, B.; Lanken, P. N.; Ischiropoulos, H. Plasma proteins modified by tyrosine nitration in acute respiratory distress syndrome. Am. J. Physiol. Lung Cell Mol. Physiol. 2000, 278, L961–L967.
120.Shishehbor, M. H.; Aviles, R. J.; Brennan, M. L.; Fu, X.; Goormastic, M.; Pearce, G. L.; Gokce, N.; Keaney, J. F.; Jr.; Penn, M. S.; Sprecher, D. L.; Vita, J. A.; Hazen, S. L. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA, J. Am. Med. Assoc. 2003, 289, 1675-1680.
121.Ara, J.; Przedborski, S.; Naini, A. B.; Jackson-Lewis, V.; Trifiletti, R. R.; Horwitz, J.; Ischiropoulos, H. Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 7659-7663.
122.Newman, D. K.; Hoffman, S.; Kotamraju, S.; Zhao, T.; Wakim, B.; Kalyanaraman, B.; Newman, P. J. Nitration of PECAM-1 ITIM tyrosines abrogates phosphorylation and SHP-2 binding. Biochem. Biophys. Res. Commun. 2002, 296, 1171-1179.
123.Di Stasi, A. M.; Mallozzi, C.; Macchia, G.; Petrucci, T. C.; Minetti, M. Peroxynitrite induces tryosine nitration and modulates tyrosine phosphorylation of synaptic proteins. J. Neurochem. 1999, 73, 727-35.
124.Koeck, T.; Levison, B.; Hazen, S. L.; Crabb, J. W.; Stuehr, D. J.; Aulak, K. S. Tyrosine nitration impairs mammalian aldolase A activity. Mol. Cell. Proteomics 2004, 3, 548-557.
125.Li, X.; De Sarno, P.; Song, L.; Beckman, J. S.; Jope, R. S. Peroxynitrite modulates tyrosine phosphorylation and phosphoinositide signalling in human neuroblastoma SH-SY5Y cells: Attenuated effects in human 1321N1 astrocytoma cells. Biochem. J. 1998, 331 (Part 2), 599-606.
126.Mallozzi, C.; Di Stasi, A. M.; Minetti, M. Nitrotyrosine mimics phosphotyrosine binding to the SH2 domain of the src family tyrosine kinase lyn. FEBS Lett. 2001, 503, 189-95.
127.Knyushko, T. V.; Sharov, V. S.; Williams, T. D.; Schoneich, C.; Bigelow, D. J. 3-Nitrotyrosine modification of SERCA2a in the aging heart: a distinct signature of the cellular redox environment. Biochemistry 2005, 44, 13071-81.
128.Viner, R. I.; Ferrington, D. A.; Williams, T. D.; Bigelow, D. J.; Schoneich, C. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem. J. 1999, 340 (Part 3), 657-669.
129.Van der Vliet, A.; Eiserich, J. P.; Shigenaga, M. K.; Cross, C. E. Reactive nitrogen species and tyrosine nitration in the respiratory tract. Am. J. Respir Crit. Care Med. 1999, 160, 1-9.
130.Roncone, R.; Barbieri, M.; Monzani, E.; Casella, L. Reactive nitrogen species generated by heme proteins: mechanism of formation and targets. Coord. Chem. Rev. 2006, 250, 1286-1293.
131.Wang, C. C. Y.; Groves, J. T. Nitric oxide synthase: models and mechanism. Curr. Opin. Chem. Biol. 2000, 4, 687-695.
132.Beckman, J. S.; Koppenol, W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am. J. Physiol. 1996, 271, C1424-C1437.
133.Kissner, R.; Nauser, T.; Bugnon, P.; Lye, P. G.; Koppenol, W. H. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique and pulse radiolysis. Chem. Res. Toxicol. 1997, 10, 1285–1292.
134.Hogg, N.; Singh, R. J.; Kalyanaraman, B. The role of glutathione in the transport and catabolism of nitric oxide. FEBS Lett. 1996, 382, 223–228.
135.Radi, R.; Beckman, J. S.; Bush, K. M.; Freeman, B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol. Chem. 1991, 266, 4244–4250.
136.Alvarez, B.; Ferrer-Sueta, G.; Freeman, B. A.; Radi, R. Kinetics of peroxynitrite reaction with amino acids and human serum albumin. J. Biol. Chem. 1999, 274, 842–848.
137.Alvarez, B.; Rubbo, H.; Kirk, M.; Barnes, S.; Freeman, B. A.; Radi, R. Peroxynitrite-dependent tryptophan nitration. Chem. Res. Toxicol. 1996, 9, 390–396.
138.Lymar, S. V.; Hurst, J. K. Carbon dioxide: physiological catalyst for peroxynitrite-mediated cellular damage or cellular protectant. Chem. Res. Toxicol. 1996, 9, 845–850.
139.Nicolis, S.; Pennati, A.; Perani, E.; Monzani, E.; Sanangelantoni, A. M.; Casella, L. Easy oxidation and nitration of human myoglobin by nitrite and hydrogen peroxide. Chem. Eur. J. 2005, 12, 749–757.
140.Barbieri, M.; Roncone, R.; Monzani, E.; Casella. L.; Protein self-modification by heme-generated reactive species. IUBMB Life 2008, 60, 41-56.
141.Nicolis, S.; Monzani, E.; Roncone, R.; Gianelli, L.; Casella, L. Metmyoglobin-catalyzed exogenous and endogenous tyrosine nitration by nitrite and hydrogen peroxide. Chem. Eur. J. 2004, 10 2281-2290.
142.Casella, L.; Monzani, E.; Roncone, R.; Nicolis, S.; Sala, A.; De Riso A. Formation of reactive nitrogen species at biologic heme centers: a potential mechanism of nitric oxide-dependent toxicity. Environ. Health. Persp. 2002, 110, 709-711.
143.Roman, R.; Dunford, H. B. Substituent effect on the oxidation of phenols and aromatic amines by horseradish peroxidase compound I. Eur. J. Biochem. 1976, 66, 607-614.
144.Monzani, E.; Roncone, R.; Galliano, M.; Koppenol, W. H.; Casella, L. Mechanistic insight into the peroxidase catalyzed nitration of tyrosine derivatives by nitrite and hydrogen peroxide. Eur. J. Biochem. 2004, 271, 895-906.
145.Chen, H. J. C.; Chang, C. M.; Lin, W. P.; Cheng, D. L.; Leong, M. I. H2O2/Nitrite-induced post-translational modifications of human hemoglobin determined by mass spectrometry: redox regulation of tyrosine nitration and 3-nitrotyrosine reduction by antioxidants. Chembiochem. 2008, 25, 312-323.
146.Lrie, Y.; Saeki, M.; Kamisaki, Y.; Martin, E.; Murad, F. Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. PNAS. 2003, 100, 5634-5639.
147.Mirzaei, H.; Schieler, J. L.; Rochet, J.-C.; Regnie, F. Identification of rotenone-induced modifications in alpha-synuclein using affinity pull-down and tandem mass spectrometry. Anal. Chem. 2006, 78, 2422-2431.
148.Yamakura, F.; Ikeda, K. Modification of tryptophan and tryptophan residues in proteins by reactive nitrogen species. Nitric Oxide 2006, 14, 152-161.
149.Sala, A.; Nicolis, S.; Roncone, R.; Casella, L.; Monzani, E. Peroxidase catalyzed nitration of tryptophan derivatives. Mechanism, products and comparison with chemical nitrating agents. Eur. J. Biochem. 2004, 271, 2841-2852.
150.Sonnenschein, K.; de Groot, H.; Kirsch, M. Formation of S-nitrosothiols from regiospecific reaction of thiols with N-nitroso-tryptophan derivatives. J. Biol. Chem. 2004, 279, 45433-45440.
151.Jaffrey, S. R.; Erdjument-Bromage, H.; Ferris, C. D.; Tempst, P.; Snyder, S. H. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol. 2001, 3, 193–197.
152.Greco, T. M.; Hodara, R.; Parastatidis, I.; Heijnen, H. F. G.; Dennehy, M. K.; Liebler, D. C.; Ischiropoulos, H. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA 2006, 103, 7420–7425.
153.Balazy, M.; Kaminski, P. M.; Mao, K.; Tan, J.; Wolin, M. S. S-nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide. J. Biol. Chem. 1998, 273, 32009–32015.
154.Tsikas, D.; Denker, K.; Frolich, J. C. Artifactual-free analysis of S-nitroso¬glutathione and S-nitroglutathione by neutral-pH, anion¬ -pairing, high-performance liquid chromatography: study on peroxynitritemediated S-nitration of glutathione to S-nitroglutathione under physiological conditions. J. Chromatogr. A. 2001, 915, 107–116.
155.Krishnatry, A. S.; Kamei, T.; Wang, H.; Qu, J.; Fung, H.-L. Identification of nitroglycerin-induced cysteine modifications of pro-matrix metalloproteinase-9. Rapid Commun. Mass Spectrom. 2011, 25, 2291–2298.
156.Rabbani, N.; Thornalley, P. J. Assay of 3-Nitrotyrosine in tissues and body fluids by liquid chromatography with tandem mass spectrometric detection. Methods Enzymol. 2008, 440, 337-359.
157.Ishii, Y.; Iijima, M.; Umemura, T.; Nishikawa, A.; Iwasaki, Y.; Ito, R.; Saito, K.; Hirose, M.; Nakazawa, H. Determination of nitrotyrosine and tyrosine by high-performance liquid chromatography with tandem mass spectrometry and immunohistochemical analysis in livers of mice administered acetaminophe. J. Pharm. Biomed. Anal. 2006, 41, 1325-1331.
158.Aulak, K. S.; Miyagi, M.; Yan, L.; West, K. A.; Massillon, D.; Crabb, J. W. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. PANS 2001, 98, 12056-102061.
159.Zhan X, Desiderio D. M. Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Anal. Biochem. 2006, 354, 279–289.
160.Lee, J. R.; Lee, S. J.; Kim, T. W.; Kim, J. K.; Park, H. S.; Kim, D. E.; Kim, K. P.; Yeo, W. S. Chemical approach for specific enrichment and mass analysis of nitrated peptides. Anal. Chem. 2009, 81, 6620–6626.
161.Abello, N.; Barroso, B.; Kerstjens, H. A. M.; Postma, D. S.; Bischiff, R. Chemical labeling and enrichment of nitrotyrosine-containing peptides. Talanta 2010, 80, 1503-1512.
162.Zhang, Q.; Qian, W.-J.; Knyushko, T. V.; Clauss, T. R. W.; Purvine, S. O.; Moore, R. J.; Sacksteder, C. A.; Chin, M. H.; Smith, D. J.; Camp Ⅱ, D. G.; Bigelow, D. J.; Smith, R. D. A method for selective enrichment and analysis of nitrotyrosine-containing peptides in complex proteome samples. J. Proteome. Res. 2007, 6, 2257-2268.
163.Dremina, E. S.; Li, X.; Galeva, N. A. ; Sharov, V. S. ; Stobaugh, J. F.; Schöneich, C. A methodology for simultaneous fluorogenic derivatization and boronate affinity enrichment of 3-nitrotyrosine -containing peptides. Anal. Biochem. 2011, 418, 184-196.
164.Washburn, M. P.; Wolters, D.; Yates, J. R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 2001, 19, 242–247.
165.Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265-275.
166.Wilmarth, P. A.; Riviere, M. A.; Rustvold, D. L.; Lauten, J. D.; Madden, T. E.; David, L. L. Two-dimensional liquid chromatography study of the human whole saliva proteome. J. Biol. Chem. 1951, 193, 265.
167.Hu, S.; Xie, Y.; Ramachandran, P. ; Loo, R. R. O. ; Li, Y. ; Loo, J. A. ; Wong, D. T. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics 2005, 5, 1714-1728.
168.Xie, H.; Rhodus, N. L.; Griffin, R. J. ; Carlis, J. V. ; Griffin, T. J. A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. Mol. Cell. Proteomics 2005, 4, 1826-1830.
169.Guo, T.; Rudnick, P. A.; Wang, W.; Lee, C. S.; DeVoe, D. L.; Balgley, B. M. Characterization of the human salivary proteome by capillary isoelectric focusing/nanoreversed-phase liquid chromatography coupled with ESI-tandem MS. J. Proteome Res. 2006, 5, 1469-1478.
170.Zhang, B.; Kirov, S.A.; Snoddy, J.R. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res, 2005, 33, W741-748.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 利用奈升流速液相層析奈電噴灑游離串聯質譜法分析人類血紅蛋白上 (1)榖胱甘肽化反應與 (2)丙烯醛的轉譯後修飾
2. 探討以穩定同位素稀釋奈升流速液相層析奈電噴灑游離串聯質譜法分析人類唾液DNA中之三個乙基胸腺嘧啶核苷加成產物與尿液中的丙烯醛和反式丁烯醛之N-乙醯基半胱胺酸
3. 以質譜法分析(1)乙二醛誘導形成的DNA交聯產物 (2)人類血紅蛋白因乙二醛、甲基乙二醛、過氧化亞硝酸所形成的轉譯後修飾,以及 (3)人類尿蛋白的硝化與亞硝化之轉譯後修飾
4. 以穩定同位素稀釋奈升流速液相層析奈電噴灑游離串聯式質譜法在人類唾液DNA和尿液中定量乙基嘌呤加成產物
5. 以穩定同位素稀釋毛細管液相層析奈電噴灑游離串聯質譜法量測(1)人類白血球DNA中之乙基胸腺嘧啶核苷加成產物(2)人類尿液中的丙烯醛和反式丁烯醛之N-乙醯基半胱胺酸代謝產物含量
6. 利用奈升流速液相層析奈電噴灑游離串聯式質譜法同時分析人類血紅蛋白上之甲基化及乙基化
7. 以穩定同位素稀釋液相層析奈電噴灑游離串聯質譜法分析(1)人類白血球DNA中乙二醛與DNA的交聯產物與 (2)人類尿液中乙烯基與8-羥基-2’-去氧鳥糞嘌呤核苷
8. 雙和叁吡啶醯胺配位基與銅(I)、銅(II)、鋅(II)和鎘(II)金屬離子建構金屬有機骨架的設計、合成、光譜和螢光特性探討
9. 以穩定同位素稀釋毛細管液相層析奈電噴灑游離串聯質譜法在人類白血球DNA和尿液中定量乙基嘌呤加成產物
10. 以質譜法分析 (一)尿液蛋白之硝化與亞硝化的修飾;(二)乙二醛與甲基乙二醛對於人體血液中血紅蛋白的修飾;(三)乙二醛誘導形成的DNA交聯產物
11. 拆解式多目標演化演算法於平行化之設計與研究
12. 在混合式硬碟上以CPU排程感知的資料放置演算法
13. 利用共軛梯度解決無線感測網路路徑
14. Ta/CoFeB/MgO垂直異向性鐵磁薄膜之溫度效應