跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 11:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊豊霖
研究生(外文):Chuang, Li-Lin
論文名稱:離子液體在柴油的脫硫及氣相層析固定相應用
論文名稱(外文):Applications Of Ionic Liquids To The Desulfurization Of Oils And As The Stationary Phases Of Gas Chramatography
指導教授:魏國佐
口試委員:周禮君王少君汪成斌劉福鯤
口試日期:2012-07-11
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:173
中文關鍵詞:離子液體柴油脫硫氣相層析
外文關鍵詞:Ionic liquidsOilDesulfurizationGas Chramatography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
離子液體應用於化學的應用非常廣泛,原因在於離子液體低揮發性、低蒸氣壓、高熱穩定性、不可燃性等特性,能取代傳統揮發性有機溶劑 (Volatile organic compounds, VOCs),降低使用傳統揮發性有機溶劑對環境污染,並避免操作人員曝露於揮發性有機溶劑的風險,而且可回收再利用,所以離子液體又被稱為「綠色溶劑」。
本篇研究主要是應用離子液體在柴油的脫硫及氣相層析的靜相應用上。研究的第一部份為藉由使用不同的離子液體1-butyl-3-methyl- imidazolium- hexafluorophosphate([C4MIM][PF6])、1-octyl-3- methyl- imidazolium-hexafluorophosphate([C8MIM][PF6])與1-butyl-3-methyl-imidazolium- tetrafluoroborate([C4MIM][BF4])三種離子液體進行進行萃取/氧化脫硫在本系統中首先將硫化物萃取到離子液體層內後在離子液體層內氧化成硫氧化合物,因為硫氧化合物具有極性特性,主要分佈在離子液體層中,並持續萃取硫化物並讓氧化硫化物持續進行,本方法在溫和的條件下便可將加氫脫硫較難去除的二苯基噻吩類型的化合物從油品中脫除,有效降低蒸餾柴油的含硫濃度978至50 ppm以下,達到深度脫硫的目的,而且離子液體可再回收使用。
另外利用光催化氧化的方法進行脫硫,利用離子液體可萃取硫化物的特性,在離子液體層內進行光催化氧化,在經過40小時後可將硫化物897降至56 ppm,且離子液體在紫外光長時間照射下並無大量裂解現象,所以離子液體是很好的光催化氧化萃取溶劑。
第二部分使用1-Vinyl-3-hexylimidazoliumbis[(trifluoromethyl) sulfonyl]imidate[C6(vim)][NTf2]及1,9-Di(3-vinylimidazolium)nonane bis(trifluoromethyl-sulfonyl)imide([C9(vim)2][NTf2]2)進行交聯反應形成高分子聚合物,應用其於氣相層析靜相上操作溫度高達300 ℃時,維持理論板數在每米1500以上。本研究亦應用溶解係數模型(Solvation parameter model)來了解離子液體性質,結果顯示這些靜相有較大的偶極作用力及氫鍵接受能力,是屬於高極性的靜相。另外,實驗上測試一系列具有苯環官能基的硝基化物、發射藥內安定劑及阻燃劑等,結果顯示較商業化管柱DB-5有較佳的測試分離效果,針對此項特性可發展出不同離子液體偵測在土壤及水中硝基芳香化合物、硝酸酯類及硝酸銨炸藥分析有相當大潛力。

Ion liquids (IL) have properties of low volatility, high viscosity, high wetting ability, negligible vapor pressure, and high thermal stability can be employed in replacing traditional volatile organic compounds (VOCs) to reduce the environmental pollution and avoid the risk of operators’ exposure to VOCs. In addition, ionic liquids are recyclable and also known as green solvents. Therefore, they have been used in many chemical applications.
This work studied the use of ionic liquids for the desulfurization of oil and the stationary phases of gas chromatography (GC). The first topic of this research is the desulfurization process of fuel oil by a combination of oxidation and solvent extraction with ionic liquids. In this work, [C4MIM][PF6], [C8MIM][PF6], and [C4MIM][BF4] were employed as the reaction media for oxidative desulfurization of oils. Sulfur compounds in hexadecane were employed as the model oil in this study. During the oxidative desulfurization, oils and ionic liquids were stirred in the presence of H2O2/TPA or other oxidative system. Sulfur compounds in oil were extracted into ionic liquid phase and then oxidized to the corresponding oxidative compounds. These oxidized products have higher polarity and are distributed in the ionic liquid phases, thus providing a successive removal of sulfurs from oil. The method is normally carried out at a moderate temperature and can easily treat dibenzothiophene (DBT) compounds, which are difficult to be removed by current hydrodesulfurization (HDS) method. With chemical oxidative/extraction process, the sulfur content in the light oil can be reduced from 978ppm to less than 50ppm in one batch operation. With photocatalytic oxidation/extraction process, the sulfur content in the light oil can be reduced from 897ppm to 56ppm after 40 hours reaction.
The second topic of this research is to coat ionic liquids onto fused silica capillaries and then used as the stationary phases of GC. Different compositions of C6(vim)][NTf2] and [C9(vim)2][NTf2]2 were employed to form the cross-linking polymers and used as GC stationary phases. The coated copolymer columns can stand the heating temperatures up to 300 ℃ with column efficiencies of 1500 plates/m or better. To understand the separation behavior of the coated polymers, the solvation parameter model was employed to characterize the ionic liquids stationary phases. The solvation parameter model results indicated that the ionic liquid stationary phases have stronger hydrogen-bonding and dipolarity/polarizability interaction than those of commercial DB5 stationary phase. This indicates that the ionic liquids are polar solvent. Furthermore, the separation results of nitroaromatics, stabilizers, and plasticisers show that the ionic liquids have better separation selectivity than that of commercial DB5 stationary phase. Overall results of this work indicate that ionic liquids have the potential as the media for the desulfurization of oils and GC stationary phases for separation analysis.

總目錄 I
表目錄 VII
圖目錄 IX
縮寫及全名對照表 XI
附錄 XIII
第一章 緒論 1
1.1硫氮化合物汙染來源 1
1.1.1柴油中硫含量規範 2
1.2脫硫方法 2
1.2.1 加氫脫硫法 3
1.2.2 生物脫硫法 6
1.2.3 萃取脫硫法 7
1.2.4 氧化萃取脫硫法 9
1.2.5 光催化氧化脫硫法 12
1.2.6 超音波氧化脫硫法 13
1.2.7 吸附脫硫法 13
1.3 離子液體 15
1.3.1 離子液體的發展 16
1.3.2 離子液體的物理化學性質 17
1.3.3 離子液體的應用 19
1.3.3.1離子液體在有機合成及催化的應用 19
1.3.3.2離子液體在電化學的應用 20
1.3.3.3離子液體在萃取方面的應用 20
1.3.3.3.1離子液體液-液萃取的應用 21
1.3.3.3.2離子液體在液相微萃取的應用 22
1.3.3.3.3離子液體在固相萃取的應用 22
1.3.3.3.4離子液體在固相微萃取 23
1.3.3.4離子液體在高效液相層析應用 24
1.3.3.5離子液體在毛細管電動層析應用 25
1.3.3.6離子液體在氣相層析管柱靜相的作用力模式及應用 25
1.4 研究動機 30
1.4.1離子液體在柴油脫硫上的應用 30
1.4.2 離子液體在GC固定相的應用 30
第二章 實驗藥品、設備及方法 31
2.1 離子液體在柴油脫硫的應用 31
2.1.1 儀器設備及藥品 31
2.1.1.1儀器設備 31
2.1.1.2 實驗藥品 32
2.1.2 離子液體合成 33
2.1.2.1 [BMIM][Cl]及[OMIM][Cl]合成 33
2.1.2.2親水性離子液體[C4MIM][BF4]及[C8MIM][BF4]合成 33
2.1.2.3疏水性離子液體[C4MIM][PF6]及[C8MIM][PF6]合成 34
2.1.3實驗方法 34
2.1.3.1萃取/氧化脫硫法 34
2.1.3.1.1 DBT及4,6-DMDBT檢量線建立 34
2.1.3.1.2 萃取/氧化模擬脫硫反應 35
2.1.3.1.3模式硫化物在不同離子液體內的氧化反應 36
2.1.3.2光催化氧化的脫硫方法 36
2.1.3.3真實油類的脫硫反應 36
2.1.3.4離子液體的回收再利用 37
2.1.3.5真實油品硫含量分析 37
2.2離子液體在GC固定相的應用 39
2.2.1 儀器設備與藥品 39
2.2.1.1儀器設備 39
2.2.1.2實驗藥品 40
2.2.2 離子液體合成 40
2.2.2.1 合成[C9MIM][NTf2]及[C4MIM][NTf2]離子液體 40
2.2.2.2合成[C9(vim)2][NTf2]2離子液體 41
2.3.2.3合成[C6vim][NTf2]離子液體 42
2.2.3 管柱內離子液體的聚合反應 43
2.2.4 氣相層析管柱製備 43
2.3.4.1氣相管柱膜厚的計算 43
2.3.4.2 靜相塗佈法 44
2.3.4.3 離子液體在管柱內聚合反應 45
2.3.4.4管柱效能測試 46
第三章 結果與討論 47
3.1 離子液體鑑定 47
3.2離子液體在柴油脫硫上的應用 47
3.2.1萃取/氧化脫硫法 47
3.2.1.1離子液體脫硫原理 47
3.2.1.2 DBT在H2O2/TPA系統中氧化可能的反應機構 48
3.2.1.3模式化合物各式儀器檢量線的建立 48
3.2.1.4不同溶劑對於模式油品的萃取/氧化脫硫效率 48
3.2.1.5不同模式硫化物的的萃取/氧化脫硫速率 50
3.2.1.6不同催化劑對於模式硫化物的的萃取/氧化脫硫速率 51
3.2.1.7以強化劑進行脫硫反應速率 52
3.2.1.8 DBT及4,6-DMDBT在離子液體內的氧化轉換速率 52
3.2.1.9 溫度對脫硫速率的影響 53
3.2.1.10 真實柴油的脫硫 54
3.2.1.11 離子液體的回收及重複性反應 56
3.2.1.12離子液體在萃取/氧化法初步結論 57
3.2.2光催化氧化脫硫 57
3.2.2.1 不同催化劑對光催化氧化脫硫的影響 57
3.2.2.2不同O2的氣體量在光催化氧化脫硫的影響 58
3.2.2.3不同氣體N2、O2及Air在光催化氧化對於脫硫的影響 58
3.2.2.4加入H2O2在光催化氧化模式油中硫化物之影響 59
3.2.2.5不同濃度naphthalene在光催化氧化下對於脫硫的影響 59
3.2.2.6真實柴油的光催化氧化脫硫 59
3.2.2.7真實柴油的光催化氧化脫硫 60
3.3離子液體在GC固定相的應用 60
3.3.1聚合型離子液體的性質測試 60
3.3.2聚合型離子液體毛細管柱效率測試 60
3.3.3 溶解係數模型 61
3.3.4 Xylenes isomer的分離 63
3.3.5 Cresols isomer的分離 64
3.3.6 Alkanes分離 64
3.3.7 Phenols分離 65
3.3.8 PAHs的分離 65
3.3.9 Nitroaromatics的分離及方法偵測極限 66
3.3.9.1Nitroaromatics的分離 66
3.3.9.2方法偵測極限 67
3.3.10發射藥中安定劑和可塑劑的分離及真實樣品的分析 67
3.3.10.1安定劑和可塑劑的分離 67
3.3.10.2安定劑和可塑劑的方法偵測極限 68
3.3.10.3安定劑和可塑劑真實樣品檢驗分析 68
第四章 結論 69
第五章 參考文獻 71

1Zamaraev, K. I. ; Khramov, M. I.; Parmon, V. N. Catal. Rev. Sci. Eng. 1994, 36, 617.
2Qi, L.; Hao, J. M.; Lv, M. M. Water, Air Soil Pollut. 1995, 85, 1873.
3〝U.S. Refiners Mark Complex-mode RFG as They Prepare for Next Hurdle〞, Oil Gas J, 1998, 5.
4Song, C. Catal. Today, 2003, 86, 211.
5Babich, I. V.; Moulijn, J. A. Fuel, 2003, 82, 607.
6Furimsky, E. and Massoth, F. E., Catal. Today, 1993, 17, 4.
7Gates,B. C.; Topsoe, H. Polyhedron 1997, 16, 3213.
8Lecrenay, E.; Sakanishi, K. Catal. Today 1997, 39, 13–20.
9〝Ultra Low Sulfur Diesel: Catalyst and Process Options〞, NPRA, AM-99-06, 1999.
10Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuil, J. C.; Beck, J. S. Nature. 1992 359 710.
11Olsen, C.; Krenzke, L. D.; Watkins, B. in: Proceedings of the Fifth International Conference on Refinery Processing, AIChE 2002 Spring National Meeting, New Orleans, LA, March 11–14, 2002, 305
12Ichinose, H.; Wariishi, H.; Tanaka, H. Biotechnol. Progr., 1999, 15, 706.
13Konishi, J.; Ishii, Y.; Onaka, T.; Okumura, K. Appl. Environ. Microbiol. 1997, 63, 3164.
14US Patent 5 028 888,1991.
15Inomta, M.; Sato, K.; Yamada, Y.; Sasaki, H. Oil Gas J, 1997, 95, 56.
16Klein, J.; van Afferden, M.; Pfeifer, F.; Schacht, S. Fuel Process. Technol. 1994, 40, 297.
17Setti, L.; Lanzarini, G.; Pifferi, P. G. Fuel Process. Technol. 1997, 52, 145.
18Bösmann, A.; Datsevich, L.; Jess, A.; Lauter, A.;Schmitz, C.; Wasserscheid, P. Chem. Commun., 2001, 23, 2494.
19Zhang, S. G.; Zhang, Z. C. Green Chem., 2002, 4, 376.
20Eser, J.; Wasserscheid, P.; Jess, A. Green Chem., 2004, 6, 316.
21Alonso, L.; Arce, A.; Francisco, M.; Rodriguez, O.; Soto, A. AIChEJ., 2007, 53, 3108.
22Alonso, L.; Arce, A.; Francisco, M.; Soto, A.; J. Chem. Thermodyn., 2008, 40, 966.
23Mochizuki, Y.; Sugawara, K. Energy Fuels, 2008, 22, 3303.
24Liu, D; Gui, J.; Song, L; Zhang, X; Sun, Z Pet. Sci. Technol., 2008, 26, 973.
25Nie, Y.; Li, C.; Sun, A.; Meng, H.; Wang, Z. Energy Fuels, 2006, 20 2083.
26Nie, Y.; Li, C.; Wang, Z.; Ind. Eng. Chem.Res., 2007, 46, 5108.
27Jiang, X.; Nie, Y.; Li, C.; Wang, Z. Fuel, 2008, 87, 79.
28Wang,Y.; Li, H.; Zhu ,W.; Jiang, X.; He, L., Lu, J.; Yan Y. Pet. Sci. Technol., 2010, 28, 1203.
29J. C. Gentry, F. M Lee,, NPRA 2000 Annual Meeting 2000, March 26–28, 16
30Dolbear, G. E.; Skov, E. R. ACS Division of Petroleum Chemistry. ACS National Meeting March 2000,. 7.
31Levy, R. E.; Rappas, A. S.; DeCanio, S. J.; Nero, V. P. NPRA 2001 Annual Meeting March 2001, 18.
32Peckham, J. Octane Week 2001, 15, 01.
33Aida, T.; Yamamoto, D.; Iwata, M.; Sakata, K., Rev Heteroatom Chem. 2000, 22, 241.
34Hydrocarbon Processing, May 2001, P29.
35Levy, R. E. in: Paper Presented at the Seventh ERTC Annual Meeting, Paris, France, November 2002.
36Nero, V. P.; DeCanio, S.J.; Rappas, A.S.; Levy, R.E.; Lee, F.-M. Am. Chem. Soc., Div. Petrol. Chem. Prepr. 2002 47 41.
37Production of Ultra-Low Sulfur Fuels by Selective Hydroperoxide Oxidation, NPRA AM-03-23.
38Otsuki, S.; Nonaka, T.; Takashima, N.; Qian, W; Ishihara, A.; Imai, T.; Kabe, T. Energy Fuels 2000, 14, 1232.
39Heimlich, B. N.; Wallace, T. J. Tetrahedron 1966, 22, 3571.
40Song, C.; Ma, X. Appl. Catal. B 2003, 41, 207.
41Lo, W.-H.; Yang, H.-Y.; Wei, G.-T. Green Chem. 2003, 5, 639.
42Treiber, A.; Dansette, P. M.; El Amri, H.; Girault, J. P.;Ginderow, D.; Mornon, J. P.; Mansuy, D. J. Am. Chem. Soc.1997, 119, 1565.
43Brown, K. N.; Espenson, J. H. Inorg. Chem. 1996, 35, 7211.
44Collins, F. M.; Lucy, A. R.; Sharp, C. J. Mol. Catal. A: Chem.1997, 117, 397.
45Li, C.; Jiang, Z.; Gao, J.; Yang, Y.; Wang, S.; Tian, F.; Sun, F.; Sun, X.; Ying, P.; Han, C. Chem. Eur. J. 2004, 10, 2277.
46Te, M.; Fairbridge, C.; Ring, Z. Appl. Catal. A 2001, 219, 267.
47Yazu, K.; Yammamoto, Y.; Furuya, T.; Miki, K.; Ukegawa, K. Energy Fuels 2001, 15, 1535.
48Yazu, K.; Furuya, T.; Miki, K.; Ukegawa, K. Chem. Lett. 2003, 32, 920.
49Anisimov, A. V.; Fedorova, E. V.; Lesnugin, A. Z.; Senyavin, V. M.; Aslanov, L. A.; Rybakov, V. B.; Tarakanova, A. V. Catal. Today 2003, 78, 319.
50Maurya, M. R.; Arya, A.; Kumar, A.; Kuznetsov, M. L.; Avecilla, F.; Pessoa, J. C. Inorg. Chem. 2010, 49, 6586.
51Shiriraishi, Y.; Naito, T.; Hirai, T. Ind. Eng. Chem. Res. 2003, 42, 6034.
52Kong, L. Y.; Li, G.; Wang, X. S. Catal. Today 2004, 93–95, 341.
53Gregory, D. D.; Wan, Z.; Jenks, W. S. J. Am. Chem. Soc. 1997, 119, 94.
54Natusch, D. F. S.; Tomkins, B. Anal. Chem. 1978, 50, 1429.
55H. S. Gao, Guo, C. Xing, J. M.; Zhao, J. M.; Liu, H. H. Green Chem., 2010, 12, 1220.
56Hirai, T.; Ogawa, K.; Komasawa, I. Ind. Eng. Chem. Res. 1996, 35, 586.
57Shiraishi, Y.; Hirai,T.;Komasawa, I. Ind. Eng. Chem. Res. 1998, 37 203.
58Shiraishi, Y.; Taki, Y.; Hirai, T.;Komasawa, I. Ind. Eng. Chem. Res. 1999, 38 3310.
59Shiraishi, Y.; Taki, Y.; Hirai,T.; Komasawa, I. Ind. Eng. Chem. Res. , 1999, 38 4538
60Shake the sulfur right out of fuel. Chem Engng Proc 2001, 5, 15.
61Irvine, R. L. U.S. Patent 5 730 860 1998.
62Parkinson, G. Chem. Eng. 2000, 8, 45.
63Yang, R. T.; Herna’ndez-Maldonado, A. J.; Yang, F. H. Science 2003, 301, 70.
64Wilkes, J. S. Green Chem. 2002, 4, 73.
65Gabriel, S.; Weiner, J. Ber. 1888, 21, 2669.
66Walden, P. Bull. Acad. Sci. St. Petersburg 1914, 405.
67Hurley, F. H.; Wier, T. P. J. Electrochem. Soc. 1951, 98, 207.
68Chum, H. L.; Koch, V. R.; Miller, L. L.; Osteryong, R. A. J. Am. Chem. Soc. 1975, 97, 264.
69Scheffler, T. B.; Hussey, C. L. Seddon, K. R.; Kear, C. M.; Armitage, P. D. Inorg. Chem. 1983, 22, 2099.
70Laher, T. M.; Hussey, C. L. Inorg. Chem. 1983, 22, 3247.
71Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc. Chem. Commun. 1992, 13, 965.
72Swatloski, R. P.; Spear, S. K.; Holbrey J. D.; Rogers, R. D. J. Am. Chem. Soc., 2002, 124, 4974.
73Reichardt, C.; Harbusch-Gornert, E. J. Liebigs Ann. Chem. 1983, 721.
74Carda-Broch, S.; Berthod, A.; Armstrong, D.W. Anal. Bioanal. Chem. 2004, 375, 191.
75Wasserscheid, P.; Hal, R. V.; Bosmann, K. Green Chem. 2002, 4, 400.
76Bonhote, P.; Dias, A. P.; Papageorgiou , M.; Kalyanasundaram, K.; Gratzel, M. Inorg.Chem. 1996, 35, 1168.
77Chauvin, Y.; Mussman, L.; Olivier, H.; Angew. Chem. Int. Ed. Engl. 1995, 34, 2698.
78Sheldon, R. Chem. Commun. 2001, 23, 991.
79Welton, T. Chem. Rev. 1999, 99, 2071.
80Revell, J. D.; Ganesan, A. Organic Lett., 2002, 4, 3071.
81Sheldon, R. Chem. Commun. 2001, 23, 2399.
82Kuntz, E. G. Chem. Tech. 1987, 17, 570.
83Kaufmann, D. E.; Nouroozian, M.; Henze, H. Synlett 1996, 11, 1091.
84Zim, D.; Souza, de R. F.; Dupont, J.; Monteiro, A. L. Tetrahedron Lett. 1998, 39, 7071.
85Howarth, J. Tetrahedron Lett. 2000, 41, 6627.
86Park, S.; Kazlauskas, J. R.; Curr. Opin. Biotecnol. 2003, 14, 432.
87MacFarlane, D. R.; Huang, J.; Forsyth, M.; Nature 1999, 402, 792.
88Doyle, M.; Choi, S. K.; Proulx, G. J. Electrochem. Soc. 2000, 147, 34.
89Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S.; Chem. Commun. 2002, 374.
90Boyle, T. J.; Ingersoll, D.; Rodriguez, M. A.; Tafoya, C. J.; Doughty, D. H.; J. Electrochem. Soc. 1999, 146, 1687.
91Buzzeo, M. C.; Klymenko, O. V.; Wadhawan, J. D.; Hardacre, C.; Seddon, K. R.; Compton, R. G. J. Phys. Chem. A 2003, 107, 8872.
92AlNashef, I. M.; Leonard, M. L.; Kittle, M. C.; Matthews, M. A.; Weidner, J. W. Electrochem. Solid-State Lett. 2001, 4, 16.
93AlNashef, I. M.; Leonard, M. L.; Matthews, M. A. Weidner, J. W. Ind. Eng. Chem.Res. 2002, 41, 4475.
94Giovanelli, D.; Buzzeo, M. C.; Lawrence, N. S.; Hardacre, C.; Seddon, K. R.; Compton, R. G. Talanta 2004, 62, 904.
95Buzzeo, M. C.; Hardacre, C.; Compton, R. G.; Anal. Chem. 2004, 76, 4583.
96Wei, G.-T.; Chen, J.-C.; Yang, Z. J. Chin. Chem. Soc., 2003, 50, 1123.
97Wei, G.-T.; Yang, Z.; Chen, C.-J. Anal. Chim. Acta, 2003, 488, 183.
98Chen, H-L,;Chang, S-K,;Lee, C-Y,;Chuang, L-L,; Wei, G.-T, Anal. Chim. Acta in press. 2012.
99Visser, A. E.; Swatloski, R. P.; Rogers, R. D.; Green Chem. 2000, 2.
100Pei, Y. C.; Wang, J. J.; Xuan, X. P.; Fan, J.; Fan, M.; Environ. Sci. Technol. 2007, 41, 5090.
101Vijayaraghavan, R.; Vedaraman, N.; Surianarayanan, M.; MacFarlane, D. R.; Talanta 2006, 69, 1059.
102Yang, Q.; Dionysiou D. D. Ion liquids: Industrial Application for Green Chemistry, Chapter 15. Americam Chemical Social Washington DC. 2003.
103Wei, G.T.; Yang, Z.; Lee, C.Y.; Yang, H. Y.; Wang, R. C. J. Am. Chem. Soc. 2004, 126, 5036.
104Peng, J.-F.; Liu, J.-F.; Jiang, G.-B.; Tai, C.; Huang, M.-J. J. Chromatogr. A 2005, 1072, 3-6.
105Liu, J. F.; Jiang, G. B.; Chi, Y. G.; Cai, Y.Q.; Zhou, Q.X.; Hu, J. T. Anal. Chem. 2003, 75, 5870.
106Stepnowski, P. Anal. Bioanal. Chem. 2005, 381, 189.
107Zhao, F.; Meng, Y.; Anderson, J. L. J. Chromatogr. A 2008, 1208, 1.
108Hennion, M. C. J. Chromatogr. A 1999, 856, 3
109Liška, I. J. Chromatogr. A 2000, 885, 3.
110Tian, M.; Bi, W.; Row, K. H. J. Sep. Sci. 2009, 32, 4033.
111Arthur, C.L.; Pawliszyn, J.; Anal. Chem. 1990, 62, 2145.
112Arthur, C.L.;Killam, L.M.; Motlagh, S.; M. Lim,; D.W. Potter,; J. Pawliszyn,; Env. Sci. Technol. 1992, 26, 979.
113Prosen, H.; Zupancic–Kralj S L., Trends Anal. Chem. 1999, 18, 272.
114Liu, J. F.; Li, N.; Jiang, G.B.; Liu, J.-M.; Jonsson, J.A. ; Wen, M. J. J. Chromatogr. A 2005, 1066, 27.
115Yang, P.; Lau, C.; Liu, X.; Lu, J. Anal. Chem. 2007, 79, 8476.
116Wanigasekara, E.; Perera, S.; Crank, J.A.; Sidisky, L.; Shirey, R.; Berthod, A.; Armstrong, D.W. Anal. Bioanal. Chem. 2010, 396, 511.
117Liu, M.; Zhou, X.; Chen, Y.; Liu, H.; Feng, X.; Qiu, G.; Liu, F.; Zeng, Z. Anal. Chim. Acta 2010, 683, 96.
118Zhao, F.; Meng, Y.; Anderson, J. L. J. Chromatogr. A 2008, 1208, 1.
119Zhou, X.; Shia, J.; Liu, M.; Liu, H.; Hao, R.; Feng, X.; Liu, F.; Acta Chim. Sinica 2010, 68, 1749.
120Lopez-Darias, J.; Pino, V.; Anderson, J. L.; Graham, C. M.; Afonso, A. M. J. Chromatogr. A 2010, 1217, 1236.
121Kaliszan, R.; Marszall, M. P.; Markuszewski, M. J.; Baczek, T.; Pernak, J. J. Chromatogr. 2004, 1030, 263.
122Qiu, H.; Jiang, S.; Liu, X. J. Chromatogr. A 2006, 1103, 265.
123Qiu, H.; Jiang, S.; Liu, X.; Zhao, L. J. Chromatogr. A 2006, 1116, 46.
124Qiu, H.; Jiang, Q.; Liu, X.; Jiang, S. Chromatographia 2008, 68, 167.
125Auler, L.M.; Silva, C.R.; Collins, K. E.; Collins, C.H. J. Chromatogr. A. 2005, 1073, 147.
126Qiu, H.; Jiang, Q.; Wei, Z.; Wang, X.; Liu, X.; Jiang, S. J. Chromatogr. A 2007, 1163, 63.
127Planeta, J.; Roth, M. J. Phys. Chem. B 2004, 108, 11244.
128Yanes, E. G.; Gratz, S. R.; Baldwin, M. J.; Robison, S. E.; Stalcup, A. M. Anal. Chem. 2001, 73, 3838.
129Jiang, T.-F.; Liang, Y.-L.;Gu, B.; Li, J.-B.; Shi, Y.-P.; Ou, Q.-Y.; Anal. Chim. Acta 2003, 479, 249.
130Vaher, M.; Koel, M.; Kaljurand, M. Electrophoresis 2002, 23, 426.
131Cabovska, B.; Kreishman, G. P.; Wassell, D. F.; Stalcup, A. M. J. Chromatogr. A 2003, 1007, 179.
132Qin, W.; Li, S. F. Y. Electrophoresis 2002, 23, 4110.
133Qin, W.; Li, S. F. Y. Analyst 2003, 128, 37.
134Koel, M. Crit. Rev. Anal. Chem. 2005, 35, 177.
135Barber, D. W.; Phillips, C. S. G.; Tusa, G. F.; Verdin, A.; J. Chem. Soc. 1959, 18.
136Pacholec, F.; Butler, H. T.; Poole, C. F.; Anal. Chem. 1982, 54, 1938.
137Pacholec, F.; Poole, C. F.; Chromatographia 1983, 17, 370.
138Armstrong, D. W.; He, L.; Liu, Y.-S. Anal. Chem. 1999, 71, 3873.
139Berthod, A.; He, L.; Armstrong, D. W. Chromatographia, 2001, 53, 63.
140Anderson, J. L.; Armstrong, D. W. Anal. Chem. 2003, 75, 4851.
141Ding, J.; Welton, T.; Armstrong, D. W.; Anal. Chem. 2004, 76, 6819.
142Anderson, J. L.; Armstrong, D. W. Anal. Chem. 2005, 77, 6453.
143Rohrschneider, L. J. Chromatogr. 1966, 22, 6.
144McReynolds, W. O. J. Chromatogr. Sci. 1970, 8, 685.
145Abraham, M. H.; Whiting, G. S.; Doherty, R. M.; Shuely, W. J. J. Chromatogr. 1990, 518, 329.
146Anderson, J. L.; Ding, J.; Welton, T.; Armstrong, D. W. J. Am. Chem. Soc. 2002, 124, 14247.
147Poole, C. F.; Ahmed, H.; Kiridena, W.; Patchett, C. C.; Koziol, W. W. J. Chromatogr. A 2006, 1104, 299.
148Baltazar, Q. Q.; Leininger, S. K.; Anderson, J. L. J. Chromatogr. A. 2008, 1182, 119.
149Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D.; Chem. Commun. 1998, 1765.
150Wang, D.; Qian, E. W.; Amano, H.; Okata, K.; Ishihara, A.; Kabe, T. Appl. Catal. A: Gen. 2003, 253, 91.
151陳宗蕙,國立中正大學化學所碩士論文 (2007)
152Bouche, J. Verzele, M. J. Gas Chromatogr. 1968, 6, 501.
153Abraham, M. H. Chem. Soc. Rev. 1993 , 22, 73.
154Witkiewicz, Z. J. Chromatogr. 1989, 466, 37.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊