跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭涵玲
研究生(外文):Cheng, Han-Ling
論文名稱:利用膠體滲透層析儀配合黏度計與光散射儀量測微脂體顆粒粒徑與樹枝狀高分子分子量的探討
論文名稱(外文):Determinations Of Liposome Size And Dendrimer Molecular Weight By Using Gel-Permeation Chromatography Coupled With Differential Viscometer And Light Scattering Detector
指導教授:王少君
指導教授(外文):Wang, Shau-Chun
口試委員:魏國佐高佳麟
口試委員(外文):Wei, Guor-TzoKao, Chai-Lin
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:膠體滲透層析儀微脂體樹枝狀分子
外文關鍵詞:Gel-Permeation ChromatographyLiposomeDendrimer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1095
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
膠體滲透層析儀(Gel-Permeation Chromatography, GPC)為一種常用於測量高分子聚合物之分子量分佈的技術,其利用尺寸大小排除法的原理搭配具有低角度(7°)(low-angle laser light scattering;簡稱LALLS)與直角度(90°)(right-angle laser light scattering;簡稱RALLS)光散射儀、微差黏度計(differential viscometer;簡稱DV)以及折射率儀(refractive index;簡稱RI)的多功能偵測器,可在溶液中直接測得不同大分子的粒徑大小,並在不需使用高分子標準品即可計算出絕對分子量。
首先使用一系列pullulan標準品(5k, 10k, 20k, 50k, 100k, 200k, 400k, 800k)利用泛用分子量校正法(Universal Calibration;簡稱UC)來建立GPC分析管柱(Viscogel column)的關係曲線,由實驗上所獲得的分子量對滯留體積(retention volume)的線性關係,確定此管柱適當的流析條件。
此外,利用LALLS、RALLS及前兩者結合Viscometer等三種不同偵測方法,配合RI偵測器得到的層析圖譜,來比較使用不同類型管柱(Viscogel分析管柱和保護管柱guard column)量測推估pullulan分子量與真實分子量的相對誤差。亦可由RI、LALLS、RALLS與Viscometer四種偵測器訊號推得水力半徑(Radius of hydrodynamic, Rh)以及迴轉半徑(Radius of gyration, Rg)。
三種偵測方法("RI+RALLS+DV"、"RI+RALLS"、"RI+LALLS"),測得P400k分子量相對誤差不大(~3%),最小的量測誤差出現在"RI+RALLS+DV"方法,推測原因為在高角度光散射下量測訊號靈敏度較高再加上搭配黏度計的修正,將以此法作為主要量測方法。
在微脂粒顆粒量測方面,使用超音波震盪法來合成微脂體(Liposome),藉由所建立之GPC靜態光散射法來量測微脂粒的顆粒大小,其旋轉半徑(Rg)值約44~48nm,並以動態光散射分析方法(水力半徑值約55 nm)及穿透式電子顯微鏡(約47 nm)來驗證之。
最後在聚乙二胺樹枝狀高分子量測方面,雖然在缺乏適當儀器常數校正下,無法準確計算出樹枝狀高分子真實分子量。但利用參考文獻資料(粒徑、分子量)加上GPC所得數據(IV、RALLS積分面積、濃度)建立以RALLS積分面積除以濃度值和分子量的尺度關係圖,可得到呈高度相關的R2值。另外並以愛因斯坦黏度方程式來確認極限黏度和代數之間的關係。
期望日後由樹枝狀聚合物數據製成之上述尺度關係圖可進一步探討不同代數間的反應動力學研究。

Gel-Permeation Chromatography (GPC) is the technique which can measure the molecular weight (M.W.) and polydispersity index (PDI) of polymer using size exclusion mechanism. GPC method with multi-functional detectors including low-angle laser light scattering (LALLS), right-angle laser light scattering (RALLS), differential viscometer (DV) and refractive index (RI) enables to determine the particle size of different macro-molecules in solution and to calculate the absolute molecular weight without using any polymer standards.
First, we use pullulan standards (5k, 10k, 20k, 50k, 100k, 200k, 400k, and 800k) to carry out universal calibration (UC) method to establish the relation curve using GPC (Viscogel) column, which shows the linear relation of the molecular weight versus retention volume to confirm the size ranges of proper exclusion.
Next, the chromatograms acquired with the detection combinations of LALLS, RALLS, and DV along with RI detector are able to compare the determination bias of pullulan M.W. between using Viscogel column and guard column. One also can employ the above four-detector methods to estimate the hydrodynamic radius (Rh) and radius of gyration (Rg) of macro-molecules.
The relative error of pullulan 400k M.W. determination differences between using three detection methods ("RI+RALLS+DV", "RI+RALLS", "RI+LALLS") are small (~3%). The least determination measurement error is found using "RI+RALLS+DV" detection method because of better signal sensitivity of light scattering collected at the right angle and angular correction with viscometry measurement.
We can also use the GPC method with two static light scattering detectors collecting at right-angle and low-angle, respectively to measure liposome particle size. The Rg of liposome is determined as 44-48 nm using GPC with light scattering detectors which is verified by comparing the Rh of liposome measured as 55 nm with dynamic light scattering method and the particle size of 47 nm imaged with transmission electron microscope.
Finally, we use characterized particle size and M.W. data of polyamidoamine dendrimer standards to confirm the scaling relation of RALLS intensity/ concentration versus M.W. Although dendrimer M.W. cannot be determined because of lacking proper instrument constant calibration. We also use Einstein viscosity equation to confirm the relation of intrinsic viscosity versus dendrimer generations.
Further study of dendrimer reaction kinetics in different generations can be investigated by using the above scaling relations.

摘要 i
Abstract iii
總目錄 vi
圖目錄 ix
表目錄 xii

第1章 緒論 1
1.1 前言 1
1.2 膠體滲透層析儀的發展及原理 3
1.2.1 膠體滲透層析儀簡介 3
1.2.2 膠體滲透層析儀系統設計圖 5
1.2.3 傳統分子量校正法 7
1.2.4 泛用分子量校正法 7
1.2.5 折射計原理 10
1.2.6 光散射基本原理 13
1.2.6.1 光散射儀原理 14
1.2.6.2 利用RI+RALLS+DV偵測器量測分子量 17
1.2.6.3 利用RI+LALLS偵測器量測分子量 20
1.2.6.4 利用光散射儀量測迴轉半徑(Rg) 21
1.2.7 正角度(90°)與低角度(7°)散射儀之比較 22
1.2.8 微差黏度計原理 23
1.2.8.1 利用惠斯登橋偵測極限黏度([η]) 25
1.2.8.2 黏度方程式定義-水力半徑(Rh)計算 28
1.3 微脂體(Liposome)簡介 29
1.4 樹枝狀高分子(Dendrimer)簡介 31
1.5 水力半徑(Hydrodynamic radius)及迴轉半徑(Radius of gyration)簡介 33
1.6 動態光散射介紹 34
第2章 實驗方法 36
2.1 實驗器材與儀器設備 36
2.2 儀器條件設定 37
2.3 藥品與溶劑 37
2.4 藥品與動相配製 39
2.5 建立校正圖譜 40
2.6 管柱分類比較 43
2.7 微脂體合成製作 (薄膜超音波法) 44
第3章 實驗結果與討論 46
3.1 分析管柱(Viscogel column)關係曲線製作 46
3.2 建立量測分子量方法之比較 47
3.3 不同偵測器量測分子量方法之比較 52
3.4 建立量測水力半徑(Rh)方法 47
3.5 建立量測迴轉半徑(Rg)方法 53
3.6 微脂體粒徑大小分析 56
3.6.1 以膠體滲透層析儀分析 56
3.6.2 以奈米粒徑分析儀分析 61
3.6.3 穿透式電子顯微鏡 62
3.7 樹枝狀分子分子量分析探討 63
第4章 結論 68
參考文獻 70
附錄 73
利用LC-MS/MS對Vitamin E成分進行探討 73


1.Mori, S.; Barth, H. G. Size Exclusion Chromatography.
Springer-Verlag: Berlin, 1999.
2. Balke, S.T.; In Modern Methods of Polymer Characterization; Barth, H.G., Mays, J.W., Ed.; John Wiley & Sons: New York, 1991.
3. Striegel, A. M.; Yau, W. W.; Kirkland, J. J.; Bly, D. D. Modern Size-Exclusion Liquid Chromatography, 2nd ed.; Wiley: New York, 2009.
4. Grubisic, Z.; Rempp, P.; Benoit, H. J. Polym. Sci. B Polym. Phys.1996, 34, 1707-1713.
5. Grubisic, Z.; Rempp, P.; Benoit, H. J. Polym. Sci. B Polym. Lett. 1967, 5,753-759.
6. Benoit, H.; Grubisic, Z.; Rempp, P.; Decker, D.; Zilliox, J.G. J. Chim. Phys. 1966, 63, 1507-1514.
7. Striegel, A. M. Multiple Detection in Size-Exclusion Chromatography. ACS Books: Washington, 2005.
8. Kratochvil, P. Classical Light Scattering from Polymer Solutions, Elsevier: Amsterdam, 1987.
9. Kratochvil, P. In Light Scattering of Polymer Solutions; Huglin, M. B., Ed.; Academic Press: New York, 1967, Ch. 7.
10. Fox, T. G.; Flory, P. J. J. Am. Chem. Soc. 1951, 73, 1904-1908.
11. New, R. R. C. Liposome: a Practical Approach, Oxford University Press: New York, 1990.
12. Bergstrand, N. Liposomes for Drug Delivery: from Physico-chemical Studies to Applications.2003; p7.
13. MacLachlam, I. Liposomal Formulations for Nucleic Acid Delivery, 2007; p238.
14. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polymer Journal. 1985, 17, 117-132.
15. http://www.malvern.com/malvern/kbase.nsf/allbyno/KB000782
16. 洪嘉鴻. 利用訊號處理技術改善凝膠滲透層析儀之光散射偵測器訊號研究. 國立中正大學, 嘉義縣, 2010.
17. Nishinari, K.; Kohyama, K.; Williams, P. A.; Phillips, G. O.; Burchard, W. D.; Ogino, K. Macromolecules. 1991, 24, 5590–5593.
18. Kato, T.; Katsuki, T.; Takahashi, Akira. Macromolecules. 1984, 17, 1726–1730.
19. Mihai, D.; Mocanu, G.; Carpov, A. European Polymer Journal. 2001, 37, 541-546.
20. http://www.dendritech.com/pamam.html
21.Zimm, B. H. J. Chem. Phys. 1948, 16, 1093-1099.
22. Caminade, A. M. Advanced Drug Delivery Reviews. 2005, 57, 2130-2146.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top