跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/14 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉娟妤
研究生(外文):Yeh, Chuan-Yu
論文名稱:學習角度對3-D臉孔再認的影響: 臉孔鏡像對稱優勢之檢驗
論文名稱(外文):How Does Learning Different Viewpoints Affect Recognition of 3-D Faces?A Test of the Mirror-Symmetry Advantage
指導教授:襲充文襲充文引用關係
指導教授(外文):Gary C.-W. Shyi
口試委員:龔俊嘉簡惠玲
口試日期:2012-01-19
學位類別:碩士
校院名稱:國立中正大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:52
中文關鍵詞:臉孔辨識角度依賴角度不變性鏡像對稱性三維臉孔模型
外文關鍵詞:face recognitionviewpoint-dependenceview-invariancemirror-symmetry3-D face models
相關次數:
  • 被引用被引用:0
  • 點閱點閱:506
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
兩種不同的理論嘗試著解釋跨角度的臉孔辨識如何達成:不受角度影響的單一表徵、或是由多張不同角度的臉孔所組成的角度依賴表徵,Freiwald及Tsao (2010)發現頂葉神經細胞階層性的對臉孔呈現角度激發,其中前端細胞群特化為對鏡像對稱的兩個不同角度激發,此一發現被認為是達成角度不變性的主要機制。本研究使用電腦轉換之三維臉孔模型做為實驗刺激討論學習臉孔的不同角度如何影響臉孔的再認,並且檢驗臉孔鏡像對稱假說。在實驗一中,我們操弄四個水準的學習和再認臉孔的角度差異,顯示角度差異越大,再認的表現越差。在實驗二中,操弄學習角度為單側臉孔或雙側臉孔,結果顯示學習30度的臉孔再認的表現高於學習60度的臉孔,然而,鏡像對稱優勢僅在後者出現。實驗三在再認時比較對稱角度和學習角度,發現對稱角度的再認會一致的劣於學習角度。為了檢驗鏡像對稱假說,實驗四比較內插角度、外插角度以及外插-對稱角度,結果顯示鏡像對稱優勢的確補償了外插角度的劣勢。整體而言,本研究的結果不僅支持Freiwald & Tsao (2010)的發現,並且發現鏡像對稱優勢在不同條件下對臉孔再認的影響。
Recognizing a face from a specific viewpoint may be achieved by either a single view-independent representation or a set of view-dependent representations depicting the appearance from different perspectives. More specifically, based on neuronal recording in monkeys, Freiwald & Tsao (2010) have recently proposed that tuning to identity of mirror-symmetrical views may be the underlying mechanisms for achieving view invariance in face recognition. Here in four experiments we used computer-generated 3-D face models via post-production to investigate how the learning of different viewpoints may affect face recognition, and to test mirror-symmetry hypothesis. In Experiments 1A and 1B, four levels of angular disparity between learning and testing views were manipulated, and the results of revealed a tendency of decrement in recognition accuracy with increment in the angular disparity between learning and test views. In Experiment 2, the effect of mirror symmetry on face recognition was examined by presentating faces either within a single visual field or across both visual fields. The results showed a clear advantage of learning faces with the viewpoint of 30˚ than with the viewpoint of 60˚. However, the advantage of mirror symmetry was evident only with the latter than the former view. In Experiment 3, the mirror-symmetrical views were tested against the learned views, and results showed consistent inferior performances with mirror-symmetrical views. Finally, in Experiment 4, the mirror-symmetry hypothesis was examined by comparing recognition performances between interpolated views, extrapolated views and extrapolated-symmetrical views. The results suggested that the mirror-symmetrical view may help overcome the disadvantage of the extrapolated view, although the overall performance indicated face recognition is mainly view-dependent. Take together, our findings not only lend (partial) support to Freiwald & Tsao (2010)’s conjecture, but also demonstrate the constraints on the effects that mirror-symmetrical views may have in face recognition.
中文摘要 i
Abstract ii
Introduction 1
Viewpoint Generalization in Object and Face Recognition 2
Evidence for Viewpoint Dependence in Face Recognition 5
Differential Generalization from Learning Different Views 7
The Present Study 11
Experiment 1A 11
Method 12
Results 16
Discussion 19
Experiment 1B 21
Method 21
Results 22
Discussion 23
Experiment 2 24
Method 25
Results 27
Discussion 30
Experiment 3 31
Method 32
Results 34
Discussion 35
Experiment 4 35
Method 36
Results 39
Discussion 40
General Discussion 42
The Differential Effect of Learned Viewpoint on Face Recognition and Generalization 43
Mirror-Symmetry and Its Role in Face Recognition 44
References 48



Aaronson, D., & Watts, B. (1987). Extensions of Grier’s computational formulas for A’ and B’ to below-chance performance. Psychological Bulletin, 102, 439–442.
Baddeley, A., & Woodhead, M. (1983). Improving face recognition ability. In S. Llooyd-Bostock & B. Clifford, Evaluating witness evidence (pp. 125–136). Chichester: Wiley.
Benton, C. P., Jennings, S. J., & Chatting, D. J. (2006). Viewpoint dependence in adaptation to facial identity. Vision Research, 46, 3313–3325.
Biederman, I. (1987). Recognition-by–components: A theory of human image understanding. Psychological Review, 94, 115–147.
Biederman, I. (2000). Recognizing depth-rotated objects: A review of recent research and theory. Spatial Vision, 13, 241–253.
Biederman, I. (1997). Neurocomputational bases of object and face recognition. Philosophical Transactions of the Royal Society of London Series B – Biological Science, 352, 1203-1219
Burton, A. M., & Bindemann, M. (2009). The role of view in human face detection. Vision Research, 49, 2026-2036
Bülthoff, H. H. & Edelman, S. (1992). Psychophysical support for a two-dimensional view interpolation theory of object recognition. Proc. Natl. Acad. Sci. U. S. A. 89, 60–64
Chelnokova, O., & Laeng, B. (2011). Three-dimensional information in face recognition: An eye-tracking study. Journal of Vision, 11, 1-15
Clutterbuck, R., & Johnston, R. A. (2005). Demonstrating how unfamiliar faces become familiar using a face matching task. Visual Cognition, 17, 97-116.
Connor, C. E. (2010). A new viewpoint on faces. Science, 330, 764-765
Davies, G., Ellis, H., & Shepherd, J. (1978). Face recognition accuracy as a function of mode of representation. Journal of Applied Psychology, 63, 180–187.
Ewbank, M. P. & Andrew, T. J. (2008). Differential sensitivity for viewpoint between familiar and unfamiliar faces in human visual cortex. Neuroimage, 40, 1857-1970.
Fang, F., Ijichi, K. & He, S. (2007). Transfer of the face viewpoint aftereffect from adaptation to different and inverted faces. Journal of Vision. 7, 1-9
Freiwald, W.A., & Tsao, D.Y. (2010). Functional Compartmentalization and viewpoint generalization within the macaque face-processing system. Science, 330, 845-851
Gobbini, M. I., & Haxby, J. V. (2007). Neural systems for recognition of familiar faces. Neuropsychologia, 45, 32-41.
Grier, J. B. (1971). Nonparametric indexes for sensitivity and bias: Computing formulas. Psychological Bulletin, 75, 424–429.
Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., & Malach, R. (1999). Differential processing of objects under various viewing conditions in the human lateral occipital cortex. Neuron, 24, 187–203.
Hancock, P. J. B., Bruce, V., & Burton, A.M. (2000). Recognition of unfamiliar faces. Trends in Cognitive Science, 4, 330-337
Haxby, J. V., & Gobbini, M. I. (2011). Distributed neural systems for face perception. In A. Calder, G. Rhodes, M. H. Johnson, & J. Haxby (Eds.), Handbook of Face Perception (pp.93-110). Oxford: Oxford University Press.
Hill, H., Schyns, P. G., & Akamatsu S. (1997). Information and viewpoint dependence in face recognition. Cognition, 62. 201-222
Jarudi, I. N., & Sinha, P. (2003) Relative contributions of internal and external features to face recognition. A1 Memo 2003 Massachusetts Institute of Technology – Artificial Intelligence laboratory.
Jeffery, L., Rhodes, G., & Busey, T. (2006). View-specific coding of face shape. Psychological Science, 17, 501-505
Kilgour, A. R., & Lederman, S. J. (2002). Face recognition by hand. Perception & Psychophysics, 64, 339-352
Langton, S. R. H., Watt, R. J., & Bruce, V. (2002). Do eyes have it? Cues to direction of social attention. Trends in Cognitive Sciences, 4, 50-59
Lee, Y., Matsumiya, K., & Wilson, H. R. (2006). Size-invariant but viewpoint-dependent representation of faces. Vision Research, 46, 1901–1910.
Liu, C.H., & Chaudhuri, A. (2002). Reassessing the 3/4 view effect in face recognition. Cognition, 83, 31-48.
Longmore, C.A., Liu, C.H., & Young, A.W. (2008). Learning faces from photographs. Journal of Experiment Psychology: Human Perception and Performance. 34, 77-100
Maurer, D., Le Grand, R., Mondloch, C.J. (2002). The many faces of configural processing. Trends in Cognitive Science. 6, 255–260.
Newell, F. N., Chiroro, P., & Valentine, T. (1999). Recognizing unfamiliar faces: The effects of distinctiveness and view. Quarterly Journal of Experimental Psychology, 52A, 509–534.
Or, C. C.-F., & Wilson, H.R. (2010). Face recognition: Are viewpoint and identity processed after face detection? Vision Research, 50, 1581-1589
O’Toole, A. J., Edelman, S., & Bülthoff, H. H. (1998). Stimulus specific effects in face recognition over changes in viewpoints. Vision Research, 38, 2351–2363.
Patterson, K. E., & Baddeley, A. D. (1977). When face recognition fails. Journal of Experimental Psychology:Human Learning and Memory, 3, 406–417.
Perrett, D. I., Oram, M., Harries, M. H., Bevan, R., Hietanen, J. K., Benson, P. J., et al.(1991). Viewer-centred and object-centred coding of heads in the macaque temporal cortex. Experimental Brain Research, 86, 159–173.
Rhode, G., Jeffery, L., Watson, T. L., Clifford, C.E.G., & Nakayama, K. (2003). Fitting the mind to world: Face adaptation and attractiveness aftereffects. Psychological Science, 14, 558-566
Schwaninger, A., & Yang, J. (2011). The application of 3D representations in face recognition. Vision Research, 51, 969-977
Shepard, R.N.,&Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701-703.
Shyi, G. C.-W. (2010). A database of facial expressions among Taiwanese college Students. Technical Report of Center for Research in Cognitive Science, National Chung Cheng Univeristy, Chiayi, Taiwan.
Shyi, G. C.-W., & He, H.-M. (2011). Effects of familiarityand expression variation on face recognition and generalization. Chinese Journal of Psychology, 53(4), 437-470.
Tanaka, J.W. (2001). The entry point offace recognition: Evidence for face expertise. Journal of Experimental Psychology: General, 130, 534-543
Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in shape recognition. Cognitive Psychology, 21 , 233-282.
Tong, F., & Nakayama, K. (1999). Robust representations for faces: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 25, 1016-1035.
Troje, N.F., & Bülthoff H.H. (1998). How is bilateral symmetry of human faces used for recognition of novel views? Vision, 38, 79-89
Troje, N. F., & Kersten, D. (1999). Viewpoint-dependent recognition of familiar faces. Perception, 28, 483-487
Valentin, D., Abdi, H., & Edelman, B. (1997). What represents a face? A computational approach for the integration of physiological and psychological data. Perception, 26, 1271–1288.
Van der Linde, I. & Watson, T. (2010). A combinatorial study of pose effects in unfamiliar face recognition. Vision Research, 50, 522-533
Wallraven, C., Schwaninger, A., Schuhmacher, S., & Bülthoff, H.H. (2002). View-based recognition of face in man and machine: Re-visiting inter-extra-ortho. Biologically motivated computer vision, 2525, 651-660
Wallraven, C., Schwaninger, A., & Bülthoff, H.H. (2005). Learning from humans: Computational modeling of face recognition. Network: Computational in Neural systems, 16, 401-418
Wong, A. C.-N., & Hayward, W. G. (2005). Constraints on view combination: effects of self-occlusion and differences among familiar and novel views. Journal of Experimental Psychology: Human Perception and Performance 2005, Vol. 31,
Wright, A. & Barton, J. J.S. (2008). Viewpoint invariance in the discrimination of upright and inverted faces. Vision research, 28, 2545-2554
Young, A. W., Hay, D. C., McWeeny K. H., Flude B. M., & Ellis, A. W. (1985). Matching familiar and unfamiliar faces on identity and expression. Perception 14, 737–746

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top