(3.238.96.184) 您好!臺灣時間:2021/05/15 07:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:杜名碧
研究生(外文):Do, Danh Bich
論文名稱:Fabrication of optical functional micro/nano periodic structures based on holographic lithography and direct laser writing techniques
論文名稱(外文):Fabrication of optical functional micro/nano periodic structures based on holographic lithography and direct laser writing techniques
指導教授:許佳振
指導教授(外文):Hsu, Chia Chen
口試委員:魏台輝許佳振謝文峰林俊元甘宏志郭文凱
口試委員(外文):Wei, Tai HueiHsu, Chia ChenHsieh, Wen FengLin, Juin YuanKan, Hung ChihKuo, Wen Kai
口試日期:20110728
學位類別:博士
校院名稱:國立中正大學
系所名稱:物理學系暨研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:163
中文關鍵詞:干涉雷射直寫技術微奈米製程
外文關鍵詞:Interference, Direct laser writing, micro/nano fabrication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:457
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:0
Periodic linear and nonlinear structures have been demonstrated to have unique physical properties due to their singular interaction with electromagnetic waves. These structures allow to have many potential applications, such as creation of a desired photonic bandgap (PBG) materials, i. e., photonic crystal, low loss waveguide and high quality cavity resonator, ultralow threshold laser, nonlinear effect with perfect phase matching, etc. The challenge for researchers is the fabrication of these structures, in a simple manner and an efficient way.
Various techniques have been recently studied and demonstrated for this purpose. Among them, holographic lithography (HL) and direct laser writing (DLW) are demonstrated to be very promising, allowing to obtain linear and nonlinear structures, from small to large area, without and with desired defect. Furthermore, these techniques allow to create periodic and quasi-periodic structures at very small length scale, in two dimensions (2D) or three dimensions (3D), which are origine of different applications that cannot be obtained by other techniques. In the framework of this dissertation, we have studied in detail and explored different aspects related to these two techniques to fabricate different kinds of optical functional micro/nano periodic structures, based on polymer materials.
Firstly, we investigated a simple and useful method, based on multiple exposure of the two-beam interference pattern, to fabricate different kinds of 2D and 3D periodic linear structures. The experimental results obtained in a suitable fabrication condition, using either SU-8 (negative) or AZ-4620 (positive) photoresist, are in very good agreement with the theoretical predictions. We demonstrated that these structures can be used as templates for creation of photonic bandgap crystals. Indeed, we have used structures obtained by the two-beam interference technique as moulds to grow large-area and uniform vertically aligned 2D periodic ZnO structures by the use of hydro thermal method. These ZnO structure have been also demonstrated to have good superhydrophobicity property.
We then studied different parameters that can influence the final fabricated structures; for example, the absorption of material at the exposure light wavelength, the developing effect, the shrinkage of the photoresist, and the energy diffussion, etc. These effects have been demonstrated to be useful for fabricating very special and useful structures, such as microlenses array, nanovein structures, controllable 3D structures, etc. These fabricated structures have been optically characterized and demonstrated be very useful for different applications such as PBG structures.
Finally, we demonstrated the fabrication of a 3D polymer quadratic nonlinear (X(2)) grating structure. We have successfully identified the chemical composition and fabrication procedure, which altogether make it possible to realize 3D gratings of a second order nonlinearity in a commonly used polymer. Indeed, by using the one-photon absorption DLW, desired photo-bleached grating patterns were generated
in the guest-host disperse-red-1/poly (methylmethacrylate) (DR1/PMMA) active layer. These DR1/PMMA gratings are alternatively assembled with polyvinyl alcohol (PVA), as passive layers, to form an active-passive multilayer structure by using the layer-by-layer process and spin-coating approaches. The corona electric field poling is then applied to obtain a 3D X(2) grating structure. This technique with corresponding fabricated structures are of interest for nonlinear frequency conversion, such as quasi-phase matching second-harmonic generation or multi-color parametric processes.
Acknowledgements v
Abstract vii
List of Figures xiii
List of Tables xviii
1 Introduction 1
1.1 Periodic linear and nonlinear structures . . . . . . . . . . . . . . . . . 1
1.2 Typical applications of micro and nano periodic linear and nonlinear
structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Periodic structures for integrated optical components and devices
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Photonic crystal . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Control spontaneous emission of light . . . . . . . . . . . . . . 7
1.2.4 Localization of Light: Microcavities and Waveguides . . . . . 10
1.2.5 Nonlinear periodic structures . . . . . . . . . . . . . . . . . . 13
1.3 Motivation and Outline of Thesis . . . . . . . . . . . . . . . . . . . . 14
2 Fabrication techniques 18
2.1 Multiple-exposure two-beam interference lithography . . . . . . . . . 18
2.1.1 Interference of two electromagnetic plane waves . . . . . . . . 19
2.1.2 Two and three-dimensional interference patterns . . . . . . . . 24
2.1.3 Concept of interference lithography . . . . . . . . . . . . . . . 28
2.1.4 Experimental fabrication of periodic structures by interference
technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Direct laser writing technique . . . . . . . . . . . . . . . . . . . . . . 38
2.2.1 Optical confocal system . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 Two-photon absorption e ect . . . . . . . . . . . . . . . . . . 39
2.2.3 One-photon direct laser writing . . . . . . . . . . . . . . . . . 41
2.2.4 Two-photon direct laser writing . . . . . . . . . . . . . . . . . 42
2.3 Electron beam lithography . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.1 System details . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.2 Writing strategies . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.3 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3 Holographic production of tunable shapes microlens arrays* 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Fabrication of microlens arrays based on mass transport e ect of SU-8
photoresist using multi-exposure two-beam interference technique . . 51
3.2.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Fabrication of ellipticity-controlled microlens arrays by controlling
parameters of multiple-exposure two-beam interference technique . . 58
3.3.1 Fabrication process of desired plastic microlens arrays . . . . . 58
3.3.2 Fabrication of shape- and structure-controlled microlens arrays 59
3.3.3 Characterization of fabricated microlens arrays and discussions 65
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4 Fabrication of nanovein structures and theoretical analysis of its
PBG* 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Fabrication of nanovein structures . . . . . . . . . . . . . . . . . . . . 71
4.2.1 Creation of nanoline connections in one-dimensional periodic
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Recording a 2D interference pattern on a pure negative photoresist
SU8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Fabrication of a 2D structure containing with nanovein connections
using SU8/HNu40 photoresist . . . . . . . . . . . . . 75
4.2.4 Fabrication of 2D nanovein structures using a mixing of negative
and positive photoresists . . . . . . . . . . . . . . . . . . 77
4.3 Theoretical analysis of PBG in nanoven structure . . . . . . . . . . . 80
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5 Fabrication of desired 3D structures by holographic assembly tech-
nique* 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Theoretical calculation and fabrication process . . . . . . . . . . . . . 86
5.3 Assembly of multiple 1D structures . . . . . . . . . . . . . . . . . . . 88
5.4 Assembly of multiple 2D structures . . . . . . . . . . . . . . . . . . . 90
5.5 Discussions and conclusions . . . . . . . . . . . . . . . . . . . . . . . 91
6 Fabrication and properties of 2D periodic ZnO rods structures 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Fabrication of 2D periodic ZnO rods structures . . . . . . . . . . . . 95
6.2.1 Fabrication process . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.2 Experimental results of 2D periodic ZnO rods structures . . . 96
6.3 Properties of fabricated 2D periodic ZnO rods structures . . . . . . . 99
6.3.1 Antiwetting surface . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.2 Multiphoton - absorption induced photoluminescence . . . . . 100
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7 Fabrication of 3D polymer quadratic nonlinear grating structures
by layer-by-layer direct laser writing technique* 106
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Sample preparation and fabrication process . . . . . . . . . . . . . . . 108
7.3 Experimental results and discussions . . . . . . . . . . . . . . . . . . 113
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8 Conclusions and future prospects 118
References 122
List of Publications 141
Curriculum Vitae of Danh Bich Do 143
References
[1] A. R. Parker, D. R. Mckenzie, and M. C. J. Large. Multilayer re ectors in
animals using green and gold beetles as contrasting examples. The Journal of Experimental Biology 201, 13071313 (1998).
[2] V. Berger. Nonlinear photonic crystals. Phys. Rev. Lett. 81, 4136 (1998).
[3] H. S. Souzuer, J. W. Haus, and R. Inguva. Photonic bands: convergence problems with plane-wave method. Phys. Rev. B 45, 13962 (1992).
[4] N. G. R. Broderick, G. Ross, H. L. O erhaus, D. J. Richardson, and D. C. Hanna. Hexagonally poled lithium niobate: A two-dimensional nonlinear pho-tonic crystal. Phys. Rev. Lett. 84, 4345 (2000).
[5] C. J. Lai, L. H. Peng, and A. H. Kung. Optical interference in nonlinear photonic crystals. Optics Letters 32, 3200 (2007).
[6] P. Vukusic and J. R. Sambles. Photonic structures in biology. Nature 424, 852 (2003).
[7] A. R. Parker. 515 million years of structural colour. J. Opt. A: Pure Appl. Opt. 2, R15 (200).
[8] P. Vukusic and I. Hooper. Directionally controlled fluorescence emission in butterfies. Science 18, 1151 (2005).
[9] D. B. Ameen, M. F. Bishop, and T. McMullen. A lattice model for computing the transmissivity of the cornea and sclera. Biophysical Journal 75, 25202531 (1998).
[10] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronis. Phys. Rev. Lett. 58, 2059 (1987).
[11] S. John. Strong localization of photon in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987).
[12] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade. Photonic crystals: Molding the
flow of light. Princeton University Press (2007).
[13] K. Sokada. Optical properties of photonic crystal. Springer (2001).
[14] R. E. Slusher and B. J. E. (Eds.). Nonlinear photonic crystal. Springer (2002).
[15] M. Dakss, L. Kuhn, P. F. Heidrich, , and B. Scott. Grating coupler for efficient excitation of optical guided waves in thin lms. Appl. Phys. Lett. 16, 523 (1970).
[16] J. J. Turner, B. Chen, L. Yang, J. M. Ballantyne, , and C. L. Tang. Gratings for integrated optics fabricated by electron microscope. Appl. Phys. Lett. 23, 333 (1973).
[17] F. W. Dabby, A. Kestenbaum, and U. C. Paek. Periodic dielectric waveguides.Optics communications 6, 125 (1972).
[18] J. N. Polky and J. H. Harris. Interdigital electro-optic thin- lm modulator. Appl. Phys. Lett. 72, 307 (1972).
[19] C. V. Shank, J. E. Bjorkholm, , and H. Kogelnik. Tunable distributed feedback dye lasers. Appl. Phys. Lett. 18, 395 (1971).
[20] Y. W. Cheng, S. C. Wang, Y. F. Yin, L. Y. Su, and J. J. Huang. Gan-based leds surrounded with a two-dimensional nanohole photonic crystal structure for effective laterally guided mode coupling. Optics Letters 36, 1611 (2011).
[21] Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist. Enhancement of light extraction eciency of ingan quantum wells light emitting diodes using sio2/polystyrene microlens arrays. Appl. Phys. Lett. 91, 221107 (2007).
[22] S. M. Kim, H. M. Kim, and S. Kang. Development of an ultraviolet imprinting process for integrating a microlens array onto an image sensor. Optics Letters 31, 2710 (2006).
[23] G. Schlingloff, H. J. Kiel, and A. Schober. Microlenses as amplification for ccd-based detection devices for screening applications in biology, biochemistry, and chemistry. Appl. Opt. 37, 1930 (1998).
[24] J. Wijnhoven and L. Willem. Preparation of photonic crystals made of air spheres in titania. Science 281, 802 (1998).
[25] E. F. Schubert and J. K. Kim. Solid-state light sources getting smart. Science 308, 1274 (2005).
[26] K. Ziemelis. Display technology: Glowing developments. Nature 399, 408(1999).
[27] Y. Suematsu and S. Arai. Single-mode semiconductor lasers for longwavelength optical fiber communications and dynamics of semiconductor lasers. IEEE journal on selected topics in quantum electronics 6, 1436 (2000).
[28] M. Gratzel. Photoelectrochemical cells. Nature 414, 338 (2001).
[29] D. T. Cassidy and F. H. Peters. Spontaneous emission, scattering, and the spectral properties of semiconductor diode lasers. IEEE journal of quantum electronics 28, 785 (1992).
[30] H. Mabuchi and A. C. Doherty. Cavity quantum electrodynamics: Coherence in context. Science 298, 1372 (2002).
[31] R. Loudon. The quantum theory of light ch. 2. Oxford Univ. Press, New York (2000).
[32] S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda. Control of light emission by 3d photonic crystals. Science 305, 227 (2004).
[33] P. Lodahl, A. F. V. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh,and W. L. Vos. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654 (2004).
[34] M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda. Simultaneous inhibition and redistribution of spontaneous light emission in photonic. Science 308, 1296 (2005).
[35] H. Watanabe and T. Baba. High-eciency photonic crystal microlaser integrated with a passive waveguide. Opt. Express 16, 2694 (2008).
[36] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan. Photonic crystals: Putting a new twist on light. Nature 386, 143 (1997).
[37] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787 (1996).
[38] R. E. Slusher. Semiconductor lasers and their applications. Opt. Photonics News 4, 8 (1993).
[39] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918 (1962).
[40] C. Canaliasa, M. Nordlof, V. Pasiskevicius, and F. Laurell. A KTiOPO4 nonlinear photonic crystal for blue second harmonic generation. Appl. Phys. Lett. 94, 081121 (2009).
[41] R. Lifshitz, A. Arie, and A. Bahabad. Photonic quasicrystals for nonlinear optical frequency conversion. Phys. Rev. Lett. 95, 133901 (2005).
[42] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfeld. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53 (2000).
[43] N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin. Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique. Opt. Express 13, 9605 (2005).
[44] T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa. Femtosecond laser interference technique with di ractive beam splitter for fabrication of three-dimensional photonic crystals. Appl. Phys. Lett. 79, 725 (2001).
[45] Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener. Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations. Appl. Phys. Lett. 82, 1284(2003).
[46] Y. C. Zhong, S. A. Zhu, H. M. Su, H. Z. Wang, J. M. Chen, Z. H. Zeng,and Y. L. Chen. Photonic crystal with diamondlike structure fabricated by holographic lithography. Appl. Phys. Lett. 87, 061103 (2005).
[47] X. Yang, L. Cai, and Q. Liu. Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures. Appl. Opt. 32, 6894 (2002).
[48] H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang. Effects of polarization on laser holography for microstructure fabrication. Phys. Rev. E 67, 056619 (2003).
[49] V. Berger, O. Gauthier-Lafaye, and E. Costard. Photonic band gaps and holography. J. Appl. Phys. 82, 60 (1997).
[50] J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas. 3d micro- and nanostructures via interference lithography. Adv. Funct. Mater. 17, 3027 (2007).
[51] B. de A. Mello, I. F. da Costa, C. R. A. Lima, and L. Cescato. Developed profile of holographically exposed photoresist gratings. Appl. Opt. 34, 597 (1995).
[52] S. Kawata and Y. Kawata. Three-dimensional optical data storage using photochromic materials. Chem. Rev. 100, 1777 (2000).
[53] B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. M. Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51 (1999).
[54] H. Ebendorff-Heidepriem. Laser writing of waveguides in photosensitive glasses. Optical Materials 25, 109 (2004).
[55] H. B. Sun, S. Matsuo, and H. Misawa. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74, 786 (1999).
[56] A. N. Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels. Electron-beam fabrication of 80 A metal structures. Appl. Phys. Lett. 29, 596 (1976).
[57] D. R. Herriott, R. J. Collier, D. Alles, and J. W. Sta ford. EBES: A practical electron lithographic system. IEEE Trans. On Electron Devices 22, 385 (1975).
[58] E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik. Highly ecient light-emitting diodes with microcavities. Science 256, 943 (1994).
[59] M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740 (2000).
[60] S. Xiao and M. Qiu. High-q microcavities realized in a circular photonic crystal slab. Photonics and Nanostructures - Fundamentals and Applications 3, 134 (2005).
[61] C. Y. Wu, T. H. Chiang, N. D. Lai, D. B. Do, and C. C. Hsu. Fabrication of microlens arrays based on the mass transport e ect of su-8 photoresist using a multiexposure two-beam interference technique. Applied Optics 48, 2473 (2009).
[62] D. B. Do, N. D. Lai, C. Y. Wu, J. H. Lin, and C. C. Hsu. Fabrication of ellipticity-controlled microlens arrays by controlling parameters of multiple-exposure two-beam interference technique interference technique. Applied Optics 50, 579 (2011).
[63] W. Yu and X. C. Yuan. A simple method for fabrication of thick sol-gel microlens as a single-mode ber coupler. IEEE Photon. Technol. Lett. 15, 1410 (2003).
[64] P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Gluckstad. Shack-hartmann multiple-beam optical tweezers. Opt. Express 11, 208 (2003).
[65] M. K. Wei and I. L. Su. Method to evaluate the enhancement of luminance efficiency in planar oled light emitting devices for microlens array. Opt. Express 12, 5777 (2004).
[66] S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin. Microlens array di user for a light-emitting diode backlight system. Opt. Lett. 31, 3016 (2006).
[67] D. S. Lee, S. S. Min, and M. S. Lee. Design and analysis of spatially variant microlens-array diffuser with uniform illumination for short-range infrared wireless communications using photometric approach. Opt. Commun. 219, 49 (2003).
[68] C. Y. Wu, T. H. Chiang, and C. C. Hsu. Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath gures and replica molding methods. Opt. Express 16, 19978 (2008).
[69] H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin. High ll-factor microlens array mold insert fabrication using a thermal reflow process. J. Micromech. Microeng. 14, 1197 (2004).
[70] H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Vertennico , and H. Thienpont. Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization. J. Opt. A: Pure Appl. Opt. 4, S22 (2002).
[71] S. K. Lee, K. C. Lee, and S. S. Lee. A simple method for microlens fabrication by the modi ed liga process. J. Micromech. Microeng. 12, 334 (2002).
[72] J. J. Yang, Y. S. Liao, and C. F. Chen. Fabrication of long hexagonal microlens array by applying gray-scale lithography in micro-replication process. Opt. Commun. 270, 433 (2007).
[73] D. L. MacFarlane, V. Narayan, J. A. Tatum, T. C. W. R. Cox, and D. J. Hayes. Microjet fabrication of microlens arrays. IEEE Photon. Technol. Lett. 6, 1041 (1994).
[74] M. F. Jensen, U. Kruhne, L. H. Christensen, and O. Geschke. Refractive microlenses produced by excimer laser irradiation of poly (methyl methacrylate). J. Micromech. Microeng. 15, 91 (2005).
[75] N. S. Ong, Y. H. Koh, and Y. Q. Fu. Microlens array produced using hot embossing process. Microelec. Eng. 60, 365 (2002).
[76] M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao. Low-cost and effcient coupling technique using reflowed sol-gel microlens. Opt. Express 11, 1621 (2003).
[77] M. He, X. Yuan, N. Q. Ngo, W. C. Cheong, and J. Bu. Reflow technique for the fabrication of an elliptical microlens array in sol-gel material. Appl. Opt. 42, 7174 (2003).
[78] J. Y. Huang, Y. S. Lu, and J. A. Yeh. Self-assembled high na microlens arrays using global dielectricphoretic energy wells. Opt. Express 14, 10779 (2006).
[79] C. C. Barghorn, O. Soppera, and D. J. Lougnot. Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters. Eur. Phys. J. Appl. Phys. 13, 31 (2001).
[80] D. J. Kang, J. P. Jeong, and B. S. Bae. Direct photofabrication of focal-length-controlled microlens array using photoinduced migration mechanisms of photosensitive sol-gel hybrid materials. Opt. Express 14, 8347 (2006).
[81] S. I. Chang and J. B. Yoon. Shape-controlled, high fill-factor microlens arrays fabricated by a 3d diffuser lithography and plastic replication method. Opt. Express 12, 6366 (2004).
[82] S. Yang, G. Chen, M. Megens, C. K. Ullal, Y. J. Han, R. Rapaport, E. L. Thomas, and J. Aizeberg. Functional biomimetic microlens arrray with integrated pores. Adv. Mater. 17, 435 (2005).
[83] N. D. Lai, J. H. Lin, W. P. Liang, C. C. Hsu, and C. H. Lin. Precisely introducing defects into periodic structures by using a double-step laser scanning technique. Appl. Opt. 45, 5777 (2006).
[84] N. D. Lai, Y. D. Huang, J. H. Lin, D. B. Do, and C. C. Hsu. Fabrication of periodic nanovein structures by holography lithography technique. Opt. Express 17, 3362 (2009).
[85] N. D. Lai, J. H. Lin, D. B. Do, W. P. Liang, Y. D. Huang, T. S. Zheng, Y. Y. Huang, and C. C. Hsu. Fabrication of two- and three-dimensional photonic crystals and photonic quasi-crystals by interference technique. Book chapter, Holography, Research and Technologies, INTECH pp. 253{278 (2011).
[86] C. Y. Wu, N. D. Lai, , and C. C. Hsu. Rapidly self-assembling three-dimensional opal photonic crystals. J. Korean Phys. Soc. 52, 1585 (2008).
[87] M. Straub and M. Gu. Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization. Opt. Lett. 27, 1824 (2002).
[88] M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater. 3, 444 (2004).
[89] R. C. Rumpf and E. G. Johnson. Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography. J. Opt. Am. Soc. A 21, 1703 (2004).
[90] S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee. Fabrication of a bunch of sub-30-nmnano bers inside microchannels using photopolymerization via a long exposure technique. Appl. Phys. Lett. 89, 173133 (2006).
[91] S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa. Two-photon lithography of nanorods in SU-8 photoresist. Nanotechnology 16, 846 (2005).
[92] F. Qi, Y. Li, D. Tan, H. Yang, and Q. Gong. Polymerized nanotips via two-photon photopolymerization. Opt. Express 15, 971 (2007).
[93] D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan. Reduction in feature size of two-photon polymerization using SCR500. Appl. Phys. Lett. 90, 071106 (2007).
[94] W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry. 65 nm feature sizes using visible wavelength 3-d multiphoton lithography. Opt. Express 15, 3426 (2007).
[95] Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong. Uniform suspended nanorods fabricated by directional scanning via two-photon photopolymerization. Nanotechnology 19, 375304 (2008).
[96] M. Qiu and S. He. Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap. J. Opt. Am. Soc. B 17, 1027 (2000).
[97] L. Z. Cai, C. S. Feng, M. Z. He, X. L. Yang, X. F. Meng, G. Y. Dong, and X. Q. Yu. Holographic design of a two-dimensional photonic crystal of square lattice with pincushion columns and large complete band gaps. Opt. Express 13, 4325 (2005).
[98] H. K. Fu, Y. F. Chen, R. L. Chern, and C. C. Chang. Connected hexagonal photonic crystals with largest full band gap. Opt. Express 13, 7854 (2005).
[99] L. Z. Cai, G. Y. Dong, C. S. Feng, X. L. Yang, X. X. Shen, and X. F. Meng. Holographic design of a two-dimensional photonic crystal of square lattice with a large two-dimensional complete bandgap. J. Opt. Am. Soc. B 23, 1708 (2006).
[100] K. M. Ho, C. T. Chan, and C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152 (1990).
[101] M. Plihal and A. A. Maradudin. Photonic band structure of two-dimensional systems: The triangular lattice. Phys. Rev. B 44, 8565 (1991).
[102] P. R. Villeneuve and M. Piche. Photonic band gaps in two-dimensional square lattices: Square and circular rods. Phys. Rev. B 46, 4973 (1992).
[103] N. D. Lai, T. S. Zheng, D. B. Do, J. H. Lin, and C. C. Hsu. Fabrication of desired three-dimensional structures by holographic assembly technique. Applied Physics A: Materials Science and Processing 100, 171 (2010).
[104] Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. Chan, C. Soukoulis, and K. Ho. Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys. Rev. B 50, 1945 (1994).
[105] S. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur. A three-dimensional photonic crystal operating at infraredwavelengths. Nature 394, 251 (1998).
[106] S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Sciences 298, 604 (2000).
[107] K. Aokia, H. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya, and Y. Aoyagi. Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation. Appl. Phys. Lett. 81, 3122 (2002).
[108] V. Mizeikis, K. Seet, S. Juodkazis, and H. Misawa. Three-dimensional woodpile photonic crystal templates for the infrared spectral range. Opt. Lett. 29, 2061 (2004).
[109] J. Serbin, A. Ovsianikov, and B. Chichkov. Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. Opt. Express 12, 5221 (2004).
[110] J. Li, B. Jia, and M. Gu. Engineering stop gaps of inorganic-organic polymeric 3d woodpile photonic crystals with post-thermal treatment. Opt. Express 16, 20073 (2008).
[111] S. Shoji, H. B. Sun, and S. Kawata. Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference. Appl. Phys. Lett. 83, 608 (2003).
[112] P. Yao, G. Schneider, B. Miao, J. Murakowski, D. Prather, E. Wetzel, and D. O'Brien. Multilayer three-dimensional photolithography with traditional planar method. Appl. Phys. Lett. 85, 3920 (2004).
[113] P. Yao, G. Schneider, D. Prather, E. Wetzel, and D. OBrien. Fabrication of three-dimensional photonic crystals with multilayer photolithography. Opt. Express 13, 2370 (2005).
[114] J. Menezes, L. Cescato, E. de Carvalho, and E. Braga. Recording different geometries of 2d hexagonal photonic crystals by choosing the phase between two-beam interference exposures. Opt. Express 14, 8578 (2006).
[115] B. Gralak, M. de Dood, G. Tayeb, S. Enoch, and D. Maystre. Theoretical study of photonic band gaps in woodpile crystals. Phys. Rev. E 67, 06660 (2003).
[116] A. Feigel and B. Sfee. Overlapped woodpile photonic crystals. Appl. Opt. 43, 793 (2004).
[117] M. Maldovan, E. Thomas, and C. Carter. Layer-by-layer diamond-like woodpile structure with a large photonic band gap. Appl. Phys. Lett. 84, 362 (2004).
[118] Y. Lin and P. Herman. E ect of structural variation on the photonic band gap in woodpile photonic crystal with body-centered-cubic symmetry. J. Appl. Phys. 98, 063104 (2005).
[119] H. Liu, J. Yao, and P. W. D. Xu. Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals. Opt. Express 15, 695 (2007).
[120] S. Enoch, J. J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand. Simple layer-by-layer photonic crystal for the control of thermal emission. Appl. Phys. Lett. 86, 261101 (2005).
[121] J. Lee and C. Chan. Circularly polarized thermal radiation from layer-by-layer photonic crystal structures. Appl. Phys. Lett. 90, 051912 (2007).
[122] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).
[123] Z. L. Wang. Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16, R829 (2004).
[124] A. B. Djurisic and Y. H. Leung. Optical properties of ZnO nanostructures. Small 2, 944 (2006).
[125] H. Cao, J. Y. Wu, H. C. Ong, J. Y. Dai, and R. P. H. Chang. Second harmonic generation in laser ablated zinc oxide thin lms. Appl. Phys. Lett. 73, 572 (1998).
[126] U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber. Second-harmonic eciency of ZnO nanolayers. J. Appl. Phys. 84, 170 (2002).
[127] J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh. Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin lms. J. Appl. Phys. 97, 033526 (2005).
[128] W. Zhang, H. Wang, K. S. Wong, Z. K. Tang, G. K. L. Wong, and R. Jain. Third-order optical nonlinearity in ZnO microcrystallite thin lms. Appl. Phys. Lett. 75, 3321 (1999).
[129] T. Tritschler, O. D. Mucke, M. Wegener, U. Morgner, and F. X. Kartner. Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics. Phys. Rev. Lett. 90, 217404 (2003).
[130] Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001).
[131] C. S. Lao, Y. Li, C. P. Wong, and Z. L. Wang. Enhancing the electrical and optoelectronic performance of nanobelt devices by molecular surface functionalization. Nano Lett. 7, 1323 (2007).
[132] C. Badre, T. Pauporte, M. Turmine, and D. Lincot. A ZnO nanowire array lm with stable highly water-repellent properties. Nanotechnology 18, 365705 (2007).
[133] Z. Zhang, H. Chen, J. Zhong, G. Saraf, and Y. Lu. Fast and reversible wettability transitions on ZnO nanostructures. Journal of Electric Materials 36, 895 (2007).
[134] B. Xu and Z. Cai. Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modi cation. Applied Surface Science 254, 5899 (2008).
[135] H. Liu, L. Feng, J. Zhai, L. Jiang, and D. Zhu. Reversible wettability of a chemical vapor deposition prepared ZnO lm between superhydrophobicity and superhydrophilicity. Langmuir 204, 5659 (2004).
[136] J. Zhang, W. Huang, and Y. C. Han. Wettability of zinc oxide surfaces with controllable structures. Langmuir 22, 2946 (2006).
[137] G. P. Li, T. Chen, B. Yan, Y. Ma, Z. Zhang, T. Yu, Z. Shen, H. Chen, and T. Wu. Tunable wettability in surface-modi ed ZnO-based hierarchical nanostructures. Appl. Phys. Lett. 92, 173104 (2008).
[138] D. X. Zhao, Y. C. Liu, D. Z. Shen, Y. M. Lu, L. G. Zhang, and X. W. Fan. Structure and photoluminescence properties of ZnO microrods. J. Appl. Phys. 94, 5605 (2003).
[139] L. Wang, X. Z. Zhang, S. Q. Zhao, G. Y. Zhou, Y. L. Zhou, and J. J. Qi. Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin lms without catalysts or additives. Appl. Phys. Lett. 86, 024108 (2005).
[140] A. Umar, E. K. Suh, and Y. B. Hahn. Growth and optical properties of large-quantity single-crystalline ZnO rods by thermal evaporation. J. Phys. D: Appl. Phys. 40, 3478 (2007).
[141] D. Andeen, L. Loeera, N. Padtureb, and F. F. Lange. Crystal chemistry of epitaxial ZnO on (111) MgAl2O4 produced by hydrothermal synthesis. J. Crystal Growth. 259, 103 (2003).
[142] D. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh, and S. Tripathy. Lateral epitaxial overgrowth of ZnO in water at 90oC. Adv. Funct. Mater. 16, 799 (2006).
[143] B. Y. Tsaur, R. W. McClelland, J. C. C. Fan, R. P. Gale, J. P. Salerno, B. A. Vojak, and C. O. Bozler. Low-dislocation-density gaas epilayers grown on gecoated si substrates by means of lateral epitxial overgrowth. Appl. Phys. Lett. 41, 347 (1982).
[144] N. D. Lai,W. P. Liang, J. H. Lin, and C. C. Hsu. Rapid fabrication of large-area periodic structures containing well-de ned defects by combining holography and mask techniques. Opt. Express 13, 5331 (2005).
[145] W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, M. E. Welland, and T. Lee. Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors. Nano Lett. 8, 950 (2008).
[146] C. Klingshir. The luminescence of ZnO under high one- and two-quantum excitation. J Phys. Status Solidi B 71, 547 (1975).
[147] P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa. 23rd international conference on the physics of semiconductors. edited by M. Scheffler and R. Zimmermann World Scienti c, Singapore p. 1453 (1996).
[148] T. Rickes, L. P. Yatsenko, S. Steuerwald, T. Halfmann, B. W. Shore, N. V. Vitanov, and K. Bergmanne. Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced stark shift. J. Chem. Phys 113, 534 (2000).
[149] Y. Toda, T. Matsubara, R. Morita, M. Yamashita, K. Hoshino, T. Someya, and Y. Arakawa. Two-photon absorption and multiphoton-induced photoluminescence of bulk GaN excited below the middle of the band gap. Appl. Phys. Lett. 82, 4714 (2003).
[150] D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che. Ecient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature. Opt. Lett. 30, 3377 (2005).
[151] D. B. Do, J. H. Lin, N. D. Lai, H. C. Kan, and C. C. Hsu. Fabrication of three-dimensional polymer quadratic nonlinear grating structures by layer-by-layer direct laser writing technique. Applied Optics 50, 4664 (2011).
[152] Z. Sekkat and W. K. (Eds.). Photoreactive organic thin films. Academic Press, USA (2002).
[153] P. Prasad and D. J. Williamss. Introduction to nonlinear optical effects in molecules and polymers. John Wiley and Sons, USA (1991).
[154] D. S. Chemla and J. Zyss. Nonlinear optical properties of organic molecules and crystals. Academic Press, USA (1987).
[155] J. Zyss. Molecular nonlinear optics materials, physics, and devices. Academic Press, USA (1994).
[156] M. Jager, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Mohlmann. Comparison of quasi-phase-matching geometries for second-harmonic generation in poled polymer channel waveguides at 1.5 m. Appl. Phys. Lett. 68, 1183 (1996).
[157] G. Martin, S. Ducci, R. Hierle, D. Josse, and J. Zyss. Quasiphase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides. Appl. Phys. Lett. 83, 1086 (2003).
[158] G. L. J. A. Rikken, C. J. E. Seppen, S. Nijhuis, and E. W. Meijer. Poled polymers for frequency doubling of diode lasers. Appl. Phys. Lett. 58, 435 (1991).
[159] O. Sugihara, M. Nakanishi, Y. Che, C. Egami, Y. Kawata, and N. Okamoto. Single-pulse ultraviolet laser recording of periodically poled structures in polymer thin lms. Appl. Opt. 39, 5632 (2000).
[160] X. Ni, M. Nakanishi, O. Sugihara, and N. Okamato. Fabrication of X(2) grating in poled polymer waveguide based on direct laser beam writing. Opt. Rev. 5, 9 (1998).
[161] J. H. Lin, N. D. Lai, C. H. Chiu, C. Y. Lin, G. W. Rieger, J. F. Young, F. S. S. Chien, and C. C. Hsu. Fabrication of spatial modulated second order nonlinear structures and quasi-phase matched second harmonic generation in a poled azo-copolymer planar waveguide. Opt. Express 16, 7832 (2008).
[162] L. H. Peng, C. C. Hsu, and Y. C. Shih. Second-harmonic green generation from two-dimensional X(2) nonlinearphotonic crystal with orthorhombic lattice structure. Appl. Phys. Lett. 836, 3447 (2003).
[163] R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen. Harmonic generation in a two-dimensional nonlinear quasi-crystal. Opt. Lett. 30, 424 (2005).
[164] J. R. Kurtz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer. Nonlinear physical optics with transversely patterned quasi-phase-matching gratings. IEEE J. Sel. Top. Quant. Electron. 8, 660 (2002).
[165] M. Farsari, A. Ovsianikov, M. VamvakakiI, Sakellari, D. Gray, B. Chichkov, and C. Fotakis. Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore. Appl. Phys. A 93, 11 (2008).
[166] D. Gindre, A. Boeglin, A. Fort, L. Mager, and K. D. Dorkenoo. Rewritable optical data storage in azobenzene copolymers. Opt. Express 14, 9896 (2006).
[167] K. B. Rochford, R. Zanoni, Q. Gong, and G. L. Stegeman. Fabrication of integrated optical structures in polydiacetylene lms by irreversible photoinduced bleaching. Appl. Phys. Lett 55, 1161 (1989).
[168] T. Hattori, T. Shibata, S. Onodera, and T. Kaino. Fabrication of refractive index grating into azo-dye-containing polymer lms by irreversible photoinduced bleaching. Appl. Phys. 87, 3240 (2000).
[169] J. S. Saltiel and Y. Kivshar. Phase matching in nonlinear X(2) photonic crystals. Opt. Lett 25, 1204 (2000).
[170] Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel. Two-color multistep cascading and parametric soliton-induced waveguides. Phys. Rev. E 60, R5056 (1999).
[171] K. M. Backer. Highly corrected close-packed microlens arrays and moth-eye structuring on curved surfaces. Appl. Opt. 38, 352 (1999).
[172] P. B. Clapham and M. C. Hutley. Reduction of lens reflection by the moth eye principle. Nature 244, 281 (1973).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文