跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 05:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王哲明
研究生(外文):Wang, ZheMing
論文名稱:FeMB系(M=Ti, Hf, V, Nb and Ta)非晶薄帶磁卡效應之研究
論文名稱(外文):The Magnetocaloric Effect Of FeMB-based Ribbons(M=Ti, Hf, V, Nb and Ta)
指導教授:張文成張文成引用關係
指導教授(外文):Chang, WenCheng
口試委員:楊智超林克偉張文成
口試委員(外文):Yang, ChihChaoLin, KeWeiChang, WenCheng
口試日期:2012-07-04
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理學系暨研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:177
中文關鍵詞:磁卡效應磁致冷鐵基薄帶非晶
外文關鍵詞:magnetocaloric effectFe based ribbonsmagnetocaloric refrigerationamorphous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
近年來,磁致冷研究領域致力於尋找可運用在室溫附近的材料,而鐵基非晶材料被認為是具有相當大潛力的材料。基於此,本研究以Fe90-xM10Bx為基底,以不同過渡金屬 (M=Ti、Hf、V、Nb和Ta) 置換鐵,並添加可提高非晶形成能力的元素B,探討元素效應對於Fe90-xM10Bx(x=5、10、15和20)合金薄帶磁性以及磁卡效應之影響。結果顯示,大部分合金薄帶(M=Ti、V、Nb、Ta)在低B含量時,皆無法形成非晶結構。而隨著B添加量的增加,會增加合金薄帶之非晶形成能力,其居禮溫度也會隨著提升。在不同過渡金屬置換與相同B含量(20 at%)下,其最大磁熵變值大小分別為M=Ti的0.99 J/kg K、M=Hf的0.94 J/kg K、M=V的0.88 J/kg K、M=Nb的0.76 J/kg K和M=Ta的0.67 J/kg K。致冷率介於46 J/kg~73 J/kg之間。非晶形成能力方面,過渡金屬對Fe混合熱負值越大之合金其非晶形成能力越好,過冷液相區大小依序為M=Hf>M=Ti>M=Nb>M=Ta>M=V。
接著,以Fe-Hf-B為基底探討B的添加量(x=3、4、5、10、15及20)對該合金薄帶磁卡效應之影響。當添加量為3 at%時,其結構已非為非晶相。當添加量為4、5、10、15以及20 at%時,其居禮溫度由305 K提升至418 K,而最大磁熵變值從x=4和5的0.97 J/kg K上升至x=10的0.98 J/kg K。其中以Fe86Hf10B4合金薄帶擁有較好的特性,適合作為室溫磁致冷材料。而Fe85Hf10-xBx合金薄帶中隨著B置換量增加,會有alpha-Fe相的析出,居禮溫度也隨著B的置換量增加而提升,其最大磁熵變值在x=7時為1.2 J/kg K,致冷率為63.24 J/kg。
最後,以Co置換Fe於Fe85-xHf10B5Cox (x=1、3及5)合金薄帶中會使居禮溫度增加,但可有效提升合金薄帶之致冷率。

In recent years, magnetic refrigeration research has focused on searching magnetic refrigeration materials for near room temperature application. Iron-based amorphous materials have been taken as the potential materials among them. Accordingly, Fe90-xM10Bx (M=Ti, Hf, V, Nb and Ta, x=5, 10, 15 and 20) alloy ribbons were prepared, using melt-spinning technique, for studies.
At first, the magnetocaloric effect (MCE) and the glass forming ability (GFA) of the melt spun Fe90-xM10Bx ribbons were studied. The Curie temperature and the glass forming ability of the amorphous phase increased with increasing B concentration. Meanwhile, for different refractory elements substitution, the SM|max decreased from 0.99 J/kg K for M=Ti to 0.67 J/kg K for M=Ta. The ΔTx decreased from 69.6 K for M=Hf to 21.6 K for M=V. The experimental results showed that Fe86Hf10B4 starts to become an amorphous. TC of the amorphous Fe90-xHf10Bx ribbons increases from 305 K for x=4 to 418 K for x=20, while |delta-SM|max decreases from 0.97 J/kg K for x=4 and 5 to 0.91 J/kg K for x=10 and 15. The optimal relative cooling power (RCP) values ranged from 51 to 69 J/kg. Among all, the Curie temperature of Fe86Hf10B4 ribbon is much closer to room temperature, making it possible for being the room temperature magnetic refrigerants. Furthermore, the Curie temperature was increased with increasing the B content of the melt spun Fe85Hf15-xBx (x=7, 9, 11, and 13). In Fe85Hf8B7 ribbon, the Curie temperature is 350 K, the change of the magnetic entropy, |delta-SM|max, can be as high as 1.2 J/kg K. Nevertheless, the replacement of Co for Fe in Fe85-xHf10B5Cox (x=1,3, and 5) ribbons may increase the Curie temperature even though the relative cooling power is improved.

摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VIII
第一章 緒論 1
1-1前言 1
1-2磁致冷的歷史與發展 3
1-3 磁致冷材料之種類 9
1-3-1磁轉變的分類與方式 9
1-3-2一級相變的材料種類 13
1-3-3二級相變的材料種類 23
1-4磁致冷研究的未來展望 33
1-5實驗動機 34
第二章 理論基礎 36
2-1 磁性的起源 36
2-2 磁性體分類 38
2-3 磁卡效應(MCE)理論基礎 41
2-3-1 熱力學方程描述 41
2-3-2 磁熵變的計算 44
2-3-3 致冷率的計算 46
2-4 磁卡效應測量方法 48
2-5非晶質合金相關理論 51
2-6玻璃形成能力(glass forming ability: GFA) 55
第三章 實驗方法 57
3-1 實驗流程 57
3-2 合金薄帶的製備 58
3-2-1 合金的配置 58
3-2-2 電弧熔煉 60
3-2-3 熔融旋淬 62
3-3 合金薄帶的分析與量測 64
3-3-1 磁性量測-VSM 64
3-3-2 磁性量測-PPMS 65
3-3-3 結構鑑定-XRD 67
3-3-4 熱磁量測-TMA 68
3-3-5 熱性質分析-DTA 69
第四章 實驗結果與討論 70
4-1 B添加於Fe-M-B(M=Ti、Hf、V、Nb和Ta)合金薄帶中對磁卡效應之影響 70
4-1-1 B含量的變化對Fe90-xTi10Bx (x=5、10、15及20)合金薄帶之磁性及磁卡效應探討 71
4-1-2 B含量的變化對Fe90-xHf10Bx (x=5、10、15及20)合金薄帶之磁性及磁卡效應探討 79
4-1-3 B含量的變化對Fe90-xV10Bx (x=5、10、15及20)合金薄帶之磁性及磁卡效應探討 90
4-1-4 B含量的變化對Fe90-xNb10Bx (x=5、10、15及20)合金薄帶之磁性及磁卡效應探討 99
4-1-5 B含量的變化對Fe90-xTa10Bx (x=5、10、15及20)合金薄帶之磁性及磁卡效應探討 110
4-1-6 探討不同過度元素置換對Fe90-xM10Bx (M=Ti、Hf、V、Nb、Ta ,x=5、10、15及20) 合金薄帶磁卡效應及非晶形成能力之影響 121
4-2 B添加減少以及以B置換Hf於Fe-Hf-B合金薄帶中對磁卡效應之影響 127
4-2-1 B添加量的減少對Fe90-xHf10Bx (x=3、4、5、10、15及20)合金薄帶之磁性及磁卡效應探討 128
4-2-2 以B置換Hf對Fe85Hf15-xBx (x=7、9、11及13)合金薄帶之磁性及磁卡效應探討 137
4-3添加第四元元素M於Fe85-xHf10B5Mx (Co,x=0、1、3及5)合金薄帶中對磁卡效應之影響 144
第五章 結論 154
第六章 參考文獻 156

[1] B. Ekkes, J. Phys. D: Appl. Phys. 38 (23), R381 (2005).
[2] T. Hashimoto, T. Kuzuhara, M. Sahashi, K. Inomata, A. Tomokiyo and H. Yayama, J. Appl. Phys. 62 (9), 3873-3878 (1987).
[3] H. Takeya, V. K. Pecharsky, J. K. A. Gschneidner and J. O. Moorman, Appl. Phys. Lett. 64 (20), 2739-2741 (1994).
[4] J. A. Barclay, W. C. O. Jr., C. B. Zimm., in:, U. Ekren, A. Schmid, W. Weber and H. W. (Eds.), Elsevier Science, Amsterdam. LT - 17 Contributed Papers, 157 (1984).
[5] 鮑雨梅、張康達,新文京開發出版股份有限公司 (2006).
[6] E. Warburg, Ann. Phys. (Leipzig) 13, 141 (1881).
[7] P. Debye, Ann. Phys. 81, 1154 (1926).
[8] W. F. Giauque, Journal of the American Chemical Society 49 (8), 1864-1870 (1927).
[9] W. F. Giauque and D. P. MacDougall, Phys. Rev. 43, 768 (1933).
[10] A. F. Lacaze, R. Berabger, G. B. Mardion, G. Claudet, C. Delpuech, A. A. Lacaze and J. Verdier, Adv. Cryog. Eng. 27, 703 (1982).
[11] G. V. Brown, J. Appl. Phys. 47 (8), 3673-3680 (1976).
[12] V. K. Pecharsky and J. K. A. Gschneidner, Phys. Rev. Lett. 78 (23), 4494-4497 (1997).
[13] K. A. G. Jr. and V. K. Pecharsky, Annu. Rev. Master. Sci. 30, 387 (2000).
[14] V. Provenzano, A. J. Shapiro, R. D. Shull, T. King, E. Canavan, P. Shirron and M. DiPirro, J. Appl. Phys. 95 (11), 6909-6911 (2004).
[15] D. T. C. Thanh, E. Bruck, N. T. Trung, J. C. P. Klaasse, K. H. J. Buschow, Z. Q. Ou, O. Tegus and L. Caron, J. Appl. Phys. 103 (7), 07B318 (2008).
[16] 葉佳錞,國立中正大學碩士論文 (2008).
[17] P. E. Brommer, J. J. M. Franse and e. b. K. H. J. B. in: Ferromagnetic Materials, (Elsevier, New York) Vol. 5, pp.323-396 (1990).
[18] A. Arrott, Phys. Rev. 108, 1394 (1957).
[19] Z. Han, Z. Hua, D. Wang, C. Zhang, B. Gu and Y. Du, J. Magn. Magn. Mater. 302 (1), 109-112 (2006).
[20] K. A. GschneidnerJr, V. K. Pecharsky and A. O. Tsokol, Rep. Prog. Phys. 68 (6), 1479 (2005).
[21] P. I. Kripyakevich, O. S. Zarechnyuk, E. I. Gladyshevskii and O. I. Bodak, Z. Anorg. Chem. 358, 90 (1968).
[22] O. I. Bodak and E. I. Gladyshevskii, Dopov. Akad. Nauk Ukr. RSR. Ser. A 12, 1125 (1969).
[23] T. T. M. Palstra, J. A. Mydosh, G. J. Nieuwenhuys, A. M. van der Kraan and K. H. J. Buschow, J. Magn. Magn. Mater. 36 (3), 290-296 (1983).
[24] T. T. M. Palstra, H. G. C. Werij, G. J. Nieuwenhuys, J. A. Mydosh, F. R. d. Boer and K. H. J. Buschow, J. Phys. F: Metal. Phys. 14 (8), 1961 (1984).
[25] T. B. Massalski, Binary Alloy Phase Diagrams 2nd edn (Materials Park Ohio, USA: ASM International) vol 2, p 1718 (1990).
[26] F. X. Hu, B. G. Shen, J. R. Sun, Z. H. Cheng, G. H. Rao and X. X. Zhang, Appl. Phys. Lett. 78 (23), 3675-3677 (2001).
[27] S. Fujieda, A. Fujita, K. Fukamichi, Y. Yamazaki and Y. Iijima, Appl. Phys. Lett. 79 (5), 653-655 (2001).
[28] S. Fujieda, A. Fujita and K. Fukamichi, Appl. Phys. Lett. 81 (7), 1276-1278 (2002).
[29] G. H. Wen, R. K. Zheng, X. X. Zhang, W. H. Wang, J. L. Chen and G. H. Wu, J. Appl. Phys. 91 (10), 8537-8539 (2002).
[30] F. X. Hu, M. Ilyn, A. M. Tishin, J. R. Sun, G. J. Wang, Y. F. Chen, F. Wang, Z. H. Cheng and B. G. Shen, J. Appl. Phys. 93 (9), 5503-5506 (2003).
[31] E. M. Levin, V. K. Pecharsky and K. A. Gschneidner, Jr., Phys. Rev. B 60 (11), 7993-7997 (1999).
[32] A. Fujita, S. Fujieda, Y. Hasegawa and K. Fukamichi, Phys. Rev. B 67 (10), 104416 (2003).
[33] F. X. Hu, G. J. Wang, J. Wang, Z. G. Sun, C. Dong, H. Chen, X. X. Zhang, J. R. Sun, Z. H. Cheng and B. G. Shen, J. Appl. Phys. 91 (10), 7836-7838 (2002).
[34] H. Feng-xia, S. Bao-gen, S. Ji-rong, C. Zhao-hua and Z. Xi-xiang, J. Phys.: Condens. Matter 12 (46), L691 (2000).
[35] X. B. Liu, Z. Altounian and A. D. Beath, J. Appl. Phys. 95 (11), 6924-6926 (2004).
[36] V. K. Pecharsky and K. A. Gschneidner, Adv. Mater. 13 (9), 683-686 (2001).
[37] V. K. Pecharsky and J. K. A. Gschneidner, Appl. Phys. Lett. 70 (24), 3299-3301 (1997).
[38] O. Tegus, E. Brück, L. Zhang, Dagula, K. H. J. Buschow and F. R. de Boer, Physica B: Condens. Matter 319 (1–4), 174-192 (2002).
[39] N. P. Thuy, L. T. Tai, N. T. Hien, N. V. Nong, T. Q. Vinh, P. D. Thang, T. P. Nguyen and P. Molini´e, Proc. 8th Asia-Pacific Physics Conf. (Taipei, Taiwan) (Singapore: World Scientific), p. 354 (2001).
[40] Z. Yi, R. Chahine and T. K. Bose, Magnetics, IEEE Trans. on 39 (5), 3358-3360 (2003).
[41] N. P. Thuy, Solid State Sci. Technol. (Malaysia) 10, 1 (2002).
[42] H. Wada and Y. Tanabe, Appl. Phys. Lett. 79 (20), 3302-3304 (2001).
[43] L. Morellon, C. Magen, P. A. Algarabel, M. R. Ibarra and C. Ritter, Appl. Phys. Lett. 79 (9), 1318-1320 (2001).
[44] H. Huang, A. O. Pecharsky, V. K. Pecharsky and K. A. G. Jr., Adv. Cryog. Eng. 48, 11 (2002).
[45] T. Morikawa and H. Wada, J. Magn. Magn. Mater. 272–276, Supplement (0), E583-E584 (2004).
[46] O. Tegus, E. Bruck, K. H. J. Buschow and F. R. de Boer, Nature 415 (6868), 150-152 (2002).
[47] E. Brück, O. Tegus, X. W. Li, F. R. de Boer and K. H. J. Buschow, Physica B: Condens. Matter 327 (2–4), 431-437 (2003).
[48] X. W. Li, O. Tegus, L. Zhang, W. Dagula, E. Bruck, K. H. J. Buschow and F. R. de Boer, Magnetics, IEEE Trans. on 39 (5), 3148-3150 (2003).
[49] F. X. Hu, B. G. Shen and J. R. Sun, Appl. Phys. Lett. 76 (23), 3460-3462 (2000).
[50] F. X. Hu, J. R. Sun, G. H. Wu and B. G. Shen, J. Appl. Phys. 90 (10), 5216-5219 (2001).
[51] J. Marcos, A. Planes, L. Mañosa, F. Casanova, X. Batlle, A. Labarta and B. Martínez, Phys. Rev. B 66 (22), 224413 (2002).
[52] M. Pasquale, C. P. Sasso and L. H. Lewis, J. Appl. Phys. 95 (11), 6918-6920 (2004).
[53] A. Aliev, A. Batdalov, S. Bosko, V. Buchelnikov, I. Dikshtein, V. Khovailo, V. Koledov, R. Levitin, V. Shavrov and T. Takagi, J. Magn. Magn. Mater. 272–276, Part 3 (0), 2040-2042 (2004).
[54] F. Albertini, F. Canepa, S. Cirafici, E. A. Franceschi, M. Napoletano, A. Paoluzi, L. Pareti and M. Solzi, J. Magn. Magn. Mater. 272–276, Part 3 (0), 2111-2112 (2004).
[55] Z. Xuezhi, L. Wei, H. P. Kunkel and W. Gwyn, J. Phys.: Condens. Matter 16 (6), L39 (2004).
[56] Y. K. Fang, C. C. Yeh, C. W. Chang, W. C. Chang, M. G. Zhu and W. Li, Scripta Materialia 57 (6), 453-456 (2007).
[57] M. Stange, H. Fjellvåg, S. Furuseth and B. C. Hauback, J. Alloys Compd. 259 (1–2), 140-144 (1997).
[58] T. Mazet, H. Ihou-Mouko and B. Malaman, Appl. Phys. Lett. 89 (2), 022503-022503 (2006).
[59] 李翊豪,國立中正大學碩士論文 (2010).
[60] D. Wang, K. Peng, B. Gu, Z. Han, S. Tang, W. Qin and Y. Du, J Alloys Compd. 358 (1–2), 312-315 (2003).
[61] S. Atalay, H. Gencer and V. S. Kolat, J. Non-Crystalline Solids 351 (30–32), 2373-2377 (2005).
[62] S. G. Min, L. G. Ligay, K. S. Kim, S. C. Yu, N. D. Tho and N. Chau, J. Magn. Magn. Mater. 300 (1), e385-e387 (2006).
[63] V. Franco, J. S. Blazquez, C. F. Conde and A. Conde, Appl. Phys. Lett. 88 (4), 042505-042503 (2006).
[64] N. Chau, P. Q. Thanh, N. Q. Hoa and N. D. The, J. Magn. Magn. Mater. 304 (1), 36-40 (2006).
[65] N. Chau, N. Q. Hoa, N. D. The and P. Q. Niem, J. Magn. Magn. Mater. 304 (1), e179-e181 (2006).
[66] N. Chau, N. D. The, N. Q. Hoa, C. X. Huu, N. D. Tho and S. C. Yu, Materials Science and Engineering: A 449–451 (0), 360-363 (2007).
[67] N. Q. Hoa, N. Chau, S. C. Yu, T. M. Thang, N. D. The and N. D. Tho, Materials Science and Engineering: A 449–451 (0), 364-367 (2007).
[68] C. Gómez-Polo, L. M. Socolovsky, J. C. Denardin, M. Knobel, J. I. Pérez-Landazábal and V. Recarte, J. Magn. Magn. Mater. 316 (2), e876-e878 (2007).
[69] Q. Luo, D. Q. Zhao, M. X. Pan and W. H. Wang, Appl. Phys. Lett. 89 (8), 081914-081913 (2006).
[70] Q. Luo, D. Q. Zhao, M. X. Pan and W. H. Wang, Appl. Phys. Lett. 90 (21), 211903-211903 (2007).
[71] J. Chol-Lyong, X. Lei, D. Ding, D. Yuan-Da and E. Gracien, J. Alloys Compd. 458 (1–2), 18-21 (2008).
[72] H. Fu, X. Y. Zhang, H. J. Yu, B. H. Teng and X. T. Zu, Solid State Commun. 145 (1–2), 15-17 (2008).
[73] L. Liang, X. Hui, Y. Wu and G. L. Chen, J. Alloys Compd. 457 (1–2), 541-544 (2008).
[74] V. Provenzano, A. J. Shapiro and R. D. Shull, Nature 429 (6994), 853-857 (2004).
[75] L. Liang, X. Hui, C. M. Zhang, Z. P. Lu and G. L. Chen, Solid State Commun. 146 (1–2), 49-52 (2008).
[76] H. Fu, H. J. Yu, Z. M. Zeng, W. L. Zhou and X. T. Zu, J. Magn. Magn. Mater. 321 (6), 578-580 (2009).
[77] H. Fu, H. J. Yu, Z. M. Zeng, W. L. Zhou and X. T. Zu, Solid State Commun. 149 (19–20), 743-745 (2009).
[78] H. Fu, M. S. Guo, H. J. Yu and X. T. Zu, J. Magn. Magn. Mater. 321 (19), 3342-3345 (2009).
[79] Y. S. Liu, J. X. Zhang, Y. Q. Wang, Y. Y. Zhu, Z. L. Yang, J. Chen and S. X. Cao, Appl. Phys. Lett. 94, 122507 (2009).
[80] Q. Y. Dong, B. G. Shen, J. Chen, J. Shen, F. Wang, H. W. Zhang and J. R. Sun, J. Appl. Phys. 105 (5), 053908-053904 (2009).
[81] D. Chen, A. Takeuchi and A. Inoue, Journal of Alloys and Compounds 440 (1–2), 199-203 (2007).
[82] 賴佳惠,國立中正大學碩士論文 (2009).
[83] 陳翔竣,國立中正大學碩士論文 (2010).
[84] S. G. Min, K. S. Kim, S. C. Yu, H. S. Suh and S. W. Lee, J. Appl. Phys. 97 (10), 10M310-313 (2005).
[85] S. G. Min, K. S. Kim, S. C. Yu and K. W. Lee, Materials Science and Engineering: A 449–451 (0), 423-425 (2007).
[86] V. Franco, C. F. Conde, J. S. Blazquez, M. Millan and A. Conde, J. Appl. Phys. 102 (1), 013908-013904 (2007).
[87] V. Franco, C. F. Conde, J. S. Blazquez, A. Conde, P. Svec, D. JaniCkoviC and L. F. Kiss, J. Appl. Phys. 101 (9), 093903-093905 (2007).
[88] V. Franco, C. F. Conde, A. Conde and L. F. Kiss, Appl. Phys. Lett. 90 (5), 052509-052503 (2007).
[89] V. Franco, J. S. Blazquez and A. Conde, J. Appl. Phys. 100 (6), 064307-064304 (2006).
[90] R. Caballero-Flores, V. Franco, A. Conde, K. E. Knipling and M. A. Willard, Appl. Phys.Lett. 96 (18), 182506-182503 (2010).
[91] P. Alvarez, J. L. S. Llamazares, P. Gorria and J. A. Blanco, Appl. Phys. Lett. 99 (23), 232501-232503 (2011).
[92] K. S. Kim, S. G. Min, S. C. Yu, S. K. Oh, Y. C. Kim and K. Y. Kim, J. Magn. Magn. Mater. 304 (2), e642-e644 (2006).
[93] B. G. Shen, R. F. Xu, J. G. Zhao and W. S. Zhan, Phy. Rev. B 43, 13 (1991).
[94] H. Oesterreicher and F. T. Parker, J. Appl. Phys. 55 (12), 4334-4338 (1984).
[95] W. Zhong, W. Chen, C. T. Au and Y. W. Du, J. Magn. Magn. Mater. 261 (1–2), 238-243 (2003).
[96] M. E. Wood and W. H. Potter, Cryogenics 25 (12), 667-683 (1985).
[97] D. Turnbull, Contemporary Physics 10 (5), 473-488 (1969).
[98] H.S.Chen, American Society for Metals, Ohio, 74-96 (1976).
[99] D. R. Uhlmann, Journal of Non-Crystalline Solids 7 (4), 337-348 (1972).
[100] A. Inoue, Acta Materialia 48 (1), 279-306 (2000).
[101] B. D. Cullity and C. D. Graham, 2nd edition, p68.
[102] 傅喬玟,國立中央大學碩士論文 (2007).
[103] B. D. Cullity, Addison-Wesley Publishing Company, Inc., 281 (1978).
[104] B. Yao, Y. Zhang, L. Si, H. Tan and Y. Li, J. Alloys Compd. 370 (1–2), 1-7 (2004).
[105] S. Bao-gen, X. Rufeng, Z. Jian-gao and Z. Wen-shan, Phys. Rev. B 43 (13), 11005-11009 (1991).
[106] A. Takeuchi and A. Inoue, Master. Japan. Inst. Metals 46, 2817 (2005).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top