跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳國男
研究生(外文):Chen, Kuonan
論文名稱:藏匿機密資訊於影像壓縮碼及影像保護技術
論文名稱(外文):Hiding Secret Information in Image Compression Code and Image Protection Techniques
指導教授:張真誠張真誠引用關係
指導教授(外文):Chang, Chinchen
口試委員:婁德權林家禎李金鳳施國琛洪炯宗黃武元
口試委員(外文):Lou, DerchyuanLin, ChiachenLee, ChinfengShih, Timothy K.Horng, JorngtzongHwang, Wuyuin
口試日期:2011-12-07
學位類別:博士
校院名稱:國立中正大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:101
中文關鍵詞:可逆式資訊隱藏易碎式浮水印向量量化編碼離散混沌系統漢明碼
外文關鍵詞:Reversible data hidingFragile watermarkingVector quantizationChaotic mapsHamming code
相關次數:
  • 被引用被引用:0
  • 點閱點閱:469
  • 評分評分:
  • 下載下載:114
  • 收藏至我的研究室書目清單書目收藏:0
影像藏密學是一種祕密通訊技術。研究影像藏密學的學者致力於如何在影像中藏入更多的機密資訊,並使得藏入機密資訊後的影像失真降到最低,藉以掩護機密資訊傳遞。換句話說,為了避開惡意者的注意,使得機密資訊能安全的藉由影像來傳遞,機密資訊嵌入前後的影像必須相似到幾乎無法分辨。
然而,有些應用領域是不容許任何影像失真的存在,如醫學和軍事研究領域。雖然可逆式資訊隱藏技術可以毫無失真的將原始影像還原,但是如果使用者誤將未還原的影像當成已還原的影像,可能會造成使用者作出錯誤的判斷,尤其是當影像中最重要的區域有失真的存在。因此,在本論文中的第一個方法,就針對這個問題提出了一種可以保護重要影像區域的資訊隱藏技術。使用者可以在機密資訊藏入前,選擇影像中最重要的區域,這些被選擇的區域,在整個機密資訊藏入的過程中,將不會有任何的失真發生。比起傳統的可逆式資訊隱藏技術,本論文中所提出的方法更具有使用上的彈性,因為它可以依據使用者的需求,在機密資訊藏入量和最終影像品質之間做出適當的調整。
因為數位化影像具有容易被創造和修改的特性,因此,如何確保影像的完整性已經變成一個重要的研究課題。在本論文的第二個方法中,針對這個問題提出一種基於離散混沌系統與漢明編碼技術的易碎式浮水印,可以偵測並且精確地指出影像被竄改的區域。
另一方面,隨著網路技術的進步,網路頻寬雖然以驚人的速度成長,但仍不敷網路使用者的需求。原因之一是因為電腦技術的快速發展,使得在網路上傳遞的影像解析度愈來愈高,檔案也隨之愈來愈大。有鑑於此,很多影像壓縮技術因應而生,其中最為廣泛應用的就是向量量化編碼法(vector quantization)。因此,在本論文最後兩個資訊隱藏方法中,將探討如何將機密資訊藏入向量量化編碼後的影像之中,藉以同時解決網路安全及頻寬問題。這兩個方法不但可以將機密資訊藏入向量量化編碼後的影像,在取出機密資訊後,原始的向量量化編碼影像也可以完全的被還原。
Image data hiding techniques are proposed for undetectable communication. The goal of the research in this field is to develop ways to embed more secret information into a cover image while minimizing distortion of the image so that the existence of the embedded secret information is imperceptible. In other words, the secret information can be transmitted safely if the stego image is indistinguishable from the cover image, allowing it to escape the best efforts of potential attackers.
However, even though the distortion is made as small as possible, some applications, such as those in the medical and military research fields, cannot tolerate any distortion at all. Although reversible data hiding schemes can restore the original image, the stego image still has a degree of distortion before the secret information is extracted. If the distortion appears in the crucial regions, it is possible to cause misjudgment while receiver takes the stego image as recovered one. To solve this problem, we are proposing an image data hiding strategy with restricted region protection. The users specify the crucial regions in advance, and modifications to these important regions are avoided. The proposed scheme outperforms traditional reversible data hiding schemes from the standpoints of flexible hiding capacity and the ability to control the quality of the image.
Due to the characteristics of a digital image, i.e., the ease with which it can be created and modified, the topic of how to ensure the integrity of an image has been of serious concern in recent years. Therefore, in the second scheme of this thesis, a fragile watermarking scheme based on chaotic maps and the Hamming code is proposed. This scheme can detect and locate any modification precisely, including the burst bits that occur during transmission in the protected image.
Although networking technologies are promoted as having incredible speed, the number of Internet users is certain to increase and, as a result, the usage of network bandwidth will also increase. In addition, the extensive utilization of high-resolution, digital images will also contribute to further heavy demands on network bandwidth. Several image compression schemes have been proposed to increase the efficiency of network bandwidth use. Among these schemes, vector quantization (VQ) is used most widely because it is efficient and effective. Therefore, in this thesis, the last two reversible data hiding schemes based on VQ images are proposed for solving both the Internet security problem and the bandwidth requirement problem concurrently. These two schemes allow the secret information to be embedded into the VQ-coded image, and they also allow the complete recovery of the original, VQ-coded image.
中文摘要 i
Abstract iii
Table of Contents v
List of Figures vii
Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Research Objectives 4
1.3 Research Scope 4
1.4 Organization 4
Chapter 2 Related Techniques 6
2.1 Huffman Coding 6
2.2 Vector Quantization Attack 11
2.3 Logistic map 11
2.4 Hamming code 12
2.5 Vector Quantization 14
Chapter 3 A New Data Hiding Strategy with Restricted Region Protection 17
3.1 The Proposed Scheme 17
3.1.1 Notations 18
3.1.2 Preprocess Phase 19
3.1.3 Embedding Phase 23
3.1.4 Extracting Procedure 28
3.2 Experimental Results and Discussions 31
3.3 Summaries 39
Chapter 4 A Secure Fragile Watermarking Scheme Based on Chaos-and-Hamming Code 41
4.1 The Proposed Scheme 41
4.1.1 The embedding procedure 42
4.1.2 The detection procedure 47
4.2 Experimental Results and Discussions 50
4.2.1 Performance of detecting and locating tampered areas 50
4.2.2 Resisting the VQ Attack 54
4.3 Summaries 56
Chapter 5 A Modification of VQ Index Table for Data Embedding and Lossless Indices Recovery 57
5.1 The Proposed Scheme 57
5.1.1 The Embedding Procedure 57
5.1.2 The Extracting and Recovering Procedure 62
5.2 Experimental Results and Discussions 65
5.3 Summaries 68
Chapter 6 An Encoding Method for Both Image Compression and Data Lossless Information Hiding 70
6.1 The Proposed Scheme 70
6.1.1 Preprocessing 70
6.1.2 The Embedding Procedure 71
6.1.3 The Extracting and Recovering Procedure 74
6.2 Experimental Results and Discussions 77
6.3 Summaries 80
Chapter 7 Conclusions and Future Works 83
Bibliography 85
Publication List 87
[1] D. A. Huffman, “A method for the construction of minimum redundancy codes,” Resonance, vol. 11, pp. 91-99, 2006.
[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Introduction to algorithms,” 2nd edition, Cambridge, MA, MIT Press, 2001.
[3] National Institute of Standards & Technology, “Data encryption standard (DES),” Federal Information Processing Standards Publication, vol. 46, 1977.
[4] National Institute of Standards & Technology, “Announcing the advanced encryption standard (AES),” Federal Information Processing Standards Publication, vol. 197, 2001.
[5] R. L. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120-126, 1978.
[6] C. H. Yang, C. Y. Weng, S. J. Wang and H. M. Sun, “Adaptive data hiding in edge areas of images with spatial LSB domain systems,” IEEE Transactions on Information Forensics and Security, vol. 3, pp. 488-497, 2008.
[7] C. C. Chang, J. Y. Hsiao and C. S. Chan, “Finding optimal LSB substitution in image hiding by dynamic programming strategy,” Pattern Recognition, vol. 36, pp. 1583-1595, 2003.
[8] J. Tian, “Reversible data embedding using a difference expansion,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, pp. 890-896, 2003.
[9] D. M. Thodi and J. J. Rodríguez, “Expansion embedding techniques for reversible watermarking,” IEEE Transactions on Image Processing, vol. 16, pp. 721-730, 2007.
[10] X. Zhang and S. Wang, “Fragile watermarking scheme using a hierarchical mechanism,” Signal Processing, vol. 89, no. 4, pp. 675-679, April 2009.
[11] Y. Lee, H. Kim and Y. Park, “A new data hiding scheme for binary image authentication with small image distortion,” Information Sciences, vol. 179, no. 22, pp. 3866-3884, November 2009.
[12] S. H. Liu, H. X. Yao, W. Gao and Y. L. Liu, “An image fragile watermark scheme based on chaotic image pattern and pixel-pairs,” Applied Mathematics and Computation, vol. 185, no. 2, pp. 869-882, February 2007.
[13] M. Holliman and N. Memon, “Counterfeiting attacks on oblivious block-wise independent invisible watermarking schemes,” IEEE Transactions on Image Processing, vol. 9, no. 3, pp. 432-441, March 2000.
[14] M. Holliman and N. Memon, “Counterfeiting attacks on oblivious block-wise independent invisible watermarking schemes,” IEEE Transactions on Image Processing, vol. 9, no. 3, pp. 432-441, March 2000.
[15] Z. Dawei, C. Guanrong and L. Wenbo, “A chaos-based robust wavelet-domain watermarking algorithm,” Choas, Solitons & Fractals, vol. 22, pp. 47-54, October 2004.
[16] A. Mooney and J. G. Keating. “Generation and detection of watermarks derived from chaotic functions,” Proceedings of Opto-Ireland 2005: Imaging and Vision, vol. 5823, pp. 58-69, Dublin, June 2005.
[17] Z. Dawei, C. Guanrong and L. Wenbo, “A chaos-based robust wavelet-domain watermarking algorithm,” Choas, Solitons & Fractals, vol. 22, pp. 47-54, October 2004.
[18] A. Mooney, J. G. Keating and I. Pitas, “A comparative study of chaotic and white noise signals in digital watermarking,” Chaos, Solitons & Fractals, vol. 35, no. 5, pp. 913-921, March 2008.
[19] R. W. Hamming, “Error detecting and error correcting codes,” Bell system technical journal, vol. 26, no. 2, pp. 147-160, April 1950.
[20] R. M. Gray, “Vector quantization,” IEEE Transactions on Acoustics, Speech and Signal Processing, pp. 4-29, 1984.
[21] Y. Linde, A. Buzo and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Transactions on Communications, vol. 28, pp. 84-95, 1980.
[22] Z. H. Wang, K. N. Chen, C. C. Chang and M. C. Li, “Hiding information in VQ index tables with reversibility,” Proceedings of the Second International Workshop on Computer Science and Engineering, Qingdao, China, pp. 1-6, October 2009.
[23] J. X. Wang and Z. M. Lu, “A path optional lossless data hiding scheme based on VQ joint neighboring coding,” Information Sciences, vol. 179, no. 19, pp. 3332-3348, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top