跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 05:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張簡光哲
研究生(外文):CHANG CHIEN, Kuang Che
論文名稱:應用於多層斷層掃描的多種肺部疾病全自動篩檢系統
論文名稱(外文):Automated Lung Screening System of Multiple Pathological Targets in Multislice CT
指導教授:柳金章柳金章引用關係張瑞峰張瑞峰引用關係
指導教授(外文):LEOU, Jin JangCHANG, Ruey Feng
口試委員:廖弘源柳金章張瑞峰林嘉文陳偉銘康立威
口試委員(外文):LIAO, Hong YuanLEOU, Jin JangCHANG, Ruey FengLIN, Jia WenCHEN, Wei MingKANG, Li Wei
口試日期:2012-07-17
學位類別:博士
校院名稱:國立中正大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:185
中文關鍵詞:多層斷層掃描特發間質性肺部疾病肺氣腫模糊邏輯分類階層式分解
外文關鍵詞:Multi-slice computed tomographyIdiopathic interstitial pneumoniasEmphysemaFuzzy logicClassificationHierarchic decomposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
此研究主要是發展一個應用在多層斷層掃描影像的電腦輔助診斷系統。在系統中,主要應用了三維數學形態學、紋理和模糊邏輯分析的原理,自動地偵測並分辨多種原發性間質性肺部疾病及肺氣腫。
整個系統的運作主要可以分成四大部份:(1) 一開始,我們的診斷系統使用一種多重解析的分解方式,此方式是依據三維形態學原理,以不同的分析刻度來分割影像中的肺部區域;(2) 為了加強在第一階段中的分割效果,我們另外使用了一種基於肺部紋理的空間區隔方法,再進一步地細分每個分析刻度下的分割結果;(3) 接下來,我們採用了階層式的樹狀結構來描述並記錄多重解析分解方法所得到的結果。在此樹狀結構中,每個節點都代表每個分析刻度裡所分解出的一個肺部區塊,每個分支都表示了不同分析刻度裡每個對應節點間的對應關係。並且,針對每個節點本身以及在不同階層間的對應關係,我們定義了六個特徵(六個模糊分析裡的歸屬函數),用以量化每個節點(區塊)為正常或是病變組織的機率;(4) 最後,使用模糊邏輯分析來決定每個節點是屬於正常組織、肺氣腫、纖維化/蜂巢化或是毛玻璃化病變。
在實驗驗證的部份,我們先是針對不同的系統參數設定以及不同的斷層掃瞄影像協定來評估診斷系統的效能。根據實驗的結果,我們所研發的診斷系統,在設定分析刻度為12層時,對於採用"LUNG"或"BONEPLUS"重建核心以及較小的準直參數(不高於1.25 mm)的斷層掃描影像,有著最佳的效能。更進一步,診斷系統所得到的結果,會拿來和資深放射師所判定的結果做比較,以及對於同一病人做長期的追蹤分析,這些實驗結果都正面地顯示出所研究的電腦輔助診斷系統之效能。同時,我們亦列出在研究上的一些困難處,像是ground truth的取得,以及纖維化和高密度區域(像是血管)的辨別,都是未來進一步研究時需要改進的地方。
This research aims at developing a computer-aided diagnosis (CAD) system for fully automatic detection and classification of pathological lung parenchyma patterns in idiopathic interstitial pneumonias (IIPs) and emphysema using multi-detector computed tomography (MDCT). The proposed CAD system is based on 3-D mathematical morphology, texture and fuzzy logic analysis, and can be divided into four stages: (1) a multi-resolution decomposition scheme based on a 3-D morphological filter was exploited to discriminate the lung region patterns at different analysis scales. (2) An additional spatial lung partitioning based on the lung tissue texture was introduced to reinforce the spatial separation between patterns extracted at the same resolution level in the decomposition pyramid. Then, (3) a hierarchic tree structure was exploited to describe the relationship between patterns at different resolution levels, and for each pattern, six fuzzy membership functions were established for assigning a probability of association with a normal tissue or a pathological target. Finally, (4) a decision step exploiting the fuzzy-logic assignments selects the target class of each lung pattern among the following categories: normal (N), emphysema (EM), fibrosis/honeycombing (FHC), and ground glass (GDG). The experimental validation of the developed CAD system allowed defining some specifications related with the recommendation values for the number of the resolution levels NRL = 12, and the CT acquisition protocol including the “LUNG” / ”BONPLUS” reconstruction kernel and thin collimations (1.25 mm or less). It also stresses out the difficulty to quantitatively assess the performance of the proposed approach in the absence of a ground truth, such as a volumetric assessment, large margin selection, and distinguishability between fibrosis and high-density (vascular) regions.
摘要...........................................................i
ABSTRACT.....................................................iii
ACKNOWLEDGEMENT................................................v
TABLE OF CONTENTS............................................vii
LIST OF FIGURES...............................................xi
LIST OF TABLES...............................................xxi
LIST OF ABBREVIATIONS......................................xxiii

CHAPTER 1 INTRODUCTION........................................1

CHAPTER 2 EMPHYSEMA AND INFILTRATIVE LUNG DISEASES: ANATOMICAL DESCRIPTION AND INVESTIGATION TECHNIQUES...................................3
2.1 Emphysema and Idiopathic Interstitial Pneumonias...........3
2.2.1 Emphysema................................................3
2.1.2 Idiopathic interstitial pneumonias.......................7
2.2 Clinical Investigation Techniques of Lung Pathologies......9
2.2.1 Pulmonary function tests.................................9
2.2.2 Multi-slice computed tomography (MSCT)..................10
2.3 Discussions...............................................17

CHAPTER 3 DETECTION OF LUNG DISEASE WITH MDCT: STATE OF THE ART...........................................................19
3.1 Lung Region Segmentation..................................20
3.1.1 Optimal thresholding....................................20
3.1.2 Region growing..........................................21
3.1.3 Edge tracking...........................................22
3.2 Lung Parenchyma Analysis..................................22
3.2.1 Lung partitioning.......................................23
3.2.2 Classification approaches...............................26
3.3 Validation Approaches.....................................37
3.4 Discussions...............................................39

CHAPTER 4 MULTIRESOLUTION APPROACH FOR CHARACTERIZATION OF LUNG DISEASES......................................................43
4.1 Pre-processing............................................47
4.1.1 Anisotropic diffusion operator..........................47
4.1.2 Stick operator..........................................48
4.2 Lung Field Segmentation...................................50
4.2.1 Definitions.............................................50
4.2.2 Segmentation of the lung mask with discrimination of large airways and high density structures.......................................55
4.3 Multi-resolution Decomposition Scheme.....................59
4.3.1 Flood size-drain leveling...............................60
4.3.2 The multi-resolution decomposition approach.............63
4.4 Hierarchic Description....................................71
4.4.1 Definition..............................................72
4.4.2 Hierarchic tree structure...............................73
4.5 Fuzzy Classification......................................77
4.5.1 Definition..............................................78
4.5.2 Lung disease classification.............................80
4.6 Spatial Lung Partitioning.................................90
4.6.1 Box partitioning........................................90
4.6.2 Texture-based partitioning..............................96
4.7 Discussions...............................................98

CHAPTER 5 CLINICAL ASSESSMENT...............................101
5.1 Influence of the Method Parameter Setup..................101
5.2 Influence of the CT Acquisition Protocol.................105
5.2.1 Impact of the reconstruction kernel....................105
5.2.2 Impact of the X-ray beam collimation...................108
5.3 Radiologist Expert Versus the CAD System.................113
5.4 Longitudinal Follow-up Studies...........................120
5.5 Discussions 129

CHAPTER 6 CONCLUSIONS AND PERSPECTIVES......................143
REFERENCES...................................................147
PUBLICATIONS.................................................159

[1]"American Thoracic Society/European Respiratory Society international multidisciplinary consensus classification of the idiopathic interstitial pneumonias," Am. J. Respir. and Crit. Care Medicine, vol. 165, no. 2, pp. 277-304, Jan. 2002.
[2]O. S. Al-Kadi and D. Watson, "Texture analysis of aggressive and nonaggressive lung tumor CE CT images," IEEE Trans. on Biomed. Eng., vol. 55, no. 7, pp. 1822-1830, Jul. 2008.
[3]R. A. Blechschmidt, R. Werthschutzky, and U. Lorcher, "Automated CT image evaluation of the lung: a morphology-based concept," IEEE Trans. on Med. Imag., vol. 20, no. 5, pp. 434-442, May 2001.
[4]M. J. Gangeh, L. Sorensen, S. B. Shaker, M. S. Kamel, M. de Bruijne, and M. Loog, "A texton-based approach for the classification of lung parenchyma in CT images," in Proc. Int. Conf. on Med. Image Computing and Comput. Assist. Interv. (MICCAI), Bei-Jing, China, Sep. 2010, pp. 595-602.
[5]S. Hu, E. A. Hoffman, and J. M. Reinhardt, "Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images," IEEE Trans. on Med. Imag., vol. 20, no. 6, pp. 490-498, Jun. 2001.
[6]L. Sorensen, S. B. Shaker, and M. de Bruijne, "Texture classification in lung CT using local binary patterns," in Proc. Int. Conf. on Med. Image Computing and Comput. Assist. Interv. (MICCAI), New York, USA, Sep. 2008, pp. 934-941.
[7]R. M. Summers, C. D. Johnson, L. M. Pusanik, J. D. Malley, A. M. Youssef, and J. E. Reed, "Automated polyp detection at CT colonography: feasibility assessment in a human population," Radiology, vol. 219, no. 1, pp. 51-59, Apr. 2001.
[8]K. Suzuki, L. Feng, S. Sone, and K. A. D. K. Doi, "Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network," IEEE Trans. on Med. Imag., vol. 24, no. 9, pp. 1138-1150, Sep. 2005.
[9]E. M. Van Rikxoort, B. De Hoop, S. Van de Vorst, M. Prokop, and B. Van Ginneken, "Automatic segmentation of pulmonary segments from volumetric chest CT scans," IEEE Trans. on Med. Imag., vol. 28, no. 4, pp. 621-630, Apr. 2009.
[10]T. W. Way, B. Sahiner, H. P. Chan, L. Hadjiiski, P. N. Cascade, A. Chughtai, N. Bogot, and E. Kazerooni, "Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features," Med. Phys., vol. 36, no. 7, pp. 3086-3098, Jul. 2009.
[11]J. P. Ko and D. P. Naidich, "Lung nodule detection and characterization with multislice CT," Radiol. Clin. North Am., vol. 41, no. 3, pp. 575-597, May 2003.
[12]T. Kobayashi, X. W. Xu, H. MacMahon, C. E. Metz, and K. Doi, "Effect of a computer-aided diagnosis scheme on radiologists' performance in detection of lung nodules on radiographs," Radiology, vol. 199, no. 3, pp. 843-848, Jun. 1996.
[13]H. MacMahon, R. Engelmann, F. M. Behlen, K. R. Hoffmann, T. Ishida, C. Roe, C. E. Metz, and K. Doi, "Computer-aided diagnosis of pulmonary nodules: results of a large-scale observer test," Radiology, vol. 213, no. 3, pp. 723-726, Dec. 1999.
[14]A. P. Reeves and W. J. Kostis, "Computer-aided diagnosis for lung cancer," Radiol. Clin. North Am., vol. 38, no. 3, pp. 497-509, May 2000.
[15]K. Fujimoto, Y. Kitaguchi, K. Kubo, and T. Honda, "Clinical analysis of chronic obstructive pulmonary disease phenotypes classified using high-resolution computed tomography," Respirology, vol. 11, no. 6, pp. 731-740, Nov. 2006.
[16]J. C. Hogg, F. Chu, S. Utokaparch, R. Woods, W. M. Elliott, L. Buzatu, R. M. Cherniack, R. M. Rogers, F. C. Sciurba, H. O. Coxson, and P. D. Pare, "The nature of small-airway obstruction in chronic obstructive pulmonary disease," New England J. Med., vol. 350, no. 26, pp. 2645-2653, Jun. 2004.
[17]H. Makita, Y. Nasuhara, K. Nagai, Y. Ito, M. Hasegawa, T. Betsuyaku, Y. Onodera, N. Hizawa, and M. Nishimura, "Characterisation of phenotypes based on severity of emphysema in chronic obstructive pulmonary disease," Thorax, vol. 62, no. 11, pp. 932-937, Nov. 2007.
[18]S. Matsuoka, T. Yamashiro, G. R. Washko, Y. Kurihara, Y. Nakajima, and H. Hatabu, "Quantitative CT assessment of chronic obstructive pulmonary disease," Radiographics, vol. 30, no. 1, pp. 55-66, Jan. 2010.
[19]G. L. Snider, L. J. Kleinerman, W. M. Thurlbeck, and Z. H. Bengali, "The definition of emphysema: report of a national, heart, lung and blood institute, division of lung diseases workshop," Am. Rev. Respir. Dis., vol. 131, no. 1, pp. 182-185, Dec. 1985.
[20]M. C. O'Driscoll, E. D. Chan, and E. Fernandez, Imaging of emphysema, Lynch DA: B. C. Decker, Hamilton, 2000.
[21]G. L. Snider, "Emphysema: the first two centuries--and beyond. A historical overview, with suggestions for future research: Part 2," Am. Rev. Respir. Dis., vol. 146, no. 6, pp. 1615-1622, Dec. 1992.
[22]J. W. Gurney, "Pathophysiology of obstructive airways disease," Radiol. Clin. North Am., vol. 36, no. 1, pp. 15-27, Jan. 1998.
[23]Z. A. Aziz, A. U. Wells, E. D. Bateman, S. J. Copley, S. R. Desai, J. C. Grutters, D. G. Milne, G. D. Phillips, D. Smallwood, J. Wiggins, M. L. Wilsher, and D. M. Hansell, "Interstitial lung disease: effects of thin-section CT on clinical decision making," Radiology, vol. 238, no. 2, pp. 725-733, Feb. 2006.
[24]C. J. Bergin and N. L. Muller, "CT of interstitial lung disease: a diagnostic approach," Am. J. Roentgenol., vol. 148, no. 1, pp. 9-15, Jan. 1987.
[25]D. A. Weiland, D. A. Lynch, S. P. Jensen, J. D. Newell, D. E. Miller, R. S. Crausman, C. Kuhn, 3rd, and D. G. Kern, "Thin-section CT findings in flock worker's lung, a work-related interstitial lung disease," Radiology, vol. 227, no. 1, pp. 222-231, Apr. 2003.
[26]G. Raghu, H. R. Collard, J. J. Egan, F. J. Martinez, J. Behr, K. K. Brown, T. V. Colby, J. F. Cordier, K. R. Flaherty, J. A. Lasky, D. A. Lynch, J. H. Ryu, J. J. Swigris, A. U. Wells, J. Ancochea, D. Bouros, C. Carvalho, U. Costabel, M. Ebina, D. M. Hansell, T. Johkoh, D. S. Kim, T. E. King, Jr., Y. Kondoh, J. Myers, N. L. Muller, A. G. Nicholson, L. Richeldi, M. Selman, R. F. Dudden, B. S. Griss, S. L. Protzko, and H. J. Schunemann, "An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management," Am. J. Respir. and Crit. Care Medicine, vol. 183, no. 6, pp. 788-824, Mar. 2011.
[27]M. Akira, H. Hamada, M. Sakatani, C. Kobayashi, M. Nishioka, and S. Yamamoto, "CT findings during phase of accelerated deterioration in patients with idiopathic pulmonary fibrosis," Am. J. Roentgenol., vol. 168, no. 1, pp. 79-83, Jan. 1997.
[28]R. O. Crapo and R. E. I. Forster, "Carbon monoxide diffusing capacity," Clin. Chest Med., vol. 10, no. 2, pp. 187-198, Jun. 1989.
[29]A. K. Jain, "Image reconstruction from projections," in Fundamentals of digital image processing, New Jersey, USA: Prentice Hall, 1989.
[30]M. Ahmed, V. Jacobi, and T. J. Vogl, "Multislice CT and CT angiography for non-invasive evaluation of bronchopulmonary sequestration," Eur. Radiol., vol. 14, no. 11, pp. 2141-2143, Nov. 2004.
[31]W. K. Chooi and S. K. Morcos, "High resolution volume imaging of airways and lung parenchyma with multislice CT," Br. J. Radiol., vol. 77, no. 1, pp. 98-105, Dec. 2004.
[32]D. Henzler, A. H. Mahnken, J. E. Wildberger, R. Rossaint, R. W. Gunther, and R. Kuhlen, "Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury," Eur. Radiol., vol. 16, no. 6, pp. 1351-1359, Jun. 2006.
[33]A. R. Hunsaker, "Multidetector-row CT and interstitial lung disease," Semin. Roentgenol., vol. 38, no. 2, pp. 176-185, Apr. 2003.
[34]S. Iwano, T. Okada, H. Satake, and S. Naganawa, "3D-CT volumetry of the lung using multidetector row CT: comparison with pulmonary function tests," Acad. Radiol., vol. 16, no. 3, pp. 250-256, Mar. 2009.
[35]F. L. Jacobson, "Multidetector-row CT of lung cancer screening," Semin. Roentgenol., vol. 38, no. 2, pp. 168-175, Apr. 2003.
[36]A. F. Kopp, K. Klingenbeck-Regn, M. Heuschmid, A. Küttner, B. Ohnesorge, F. T., S. S., and C. D. Claussen, "Multislice computed tomography: basic principles and clinical applications," electromedica 68, no. 2, pp. 94-105, 2000.
[37]M. Uffmann and M. Prokop, "Multislice CT of the lung. Technique and clinical applications," Der Radiologe, vol. 41, no. 3, pp. 240-247, Mar. 2001.
[38]S. G. Armato, 3rd and W. F. Sensakovic, "Automated lung segmentation for thoracic CT impact on computer-aided diagnosis," Acad. Radiol., vol. 11, no. 9, pp. 1011-1021, Sep. 2004.
[39]N. Otsu, "A threshold selection method from gray-level histograms," IEEE Trans. on Systems, Man and Cybern., vol. 9, no. 1, pp. 62-66, Jan. 1979.
[40]J. M. Reinhardt and W. E. Higgins, "Paradigm for shape-based image analysis," Optical Eng., vol. 37, no. 2, pp. 570-581, Feb. 1998.
[41]J. K. Leader, B. Zheng, R. M. Rogers, F. C. Sciurba, A. Perez, B. E. Chapman, S. Patel, C. R. Fuhrman, and D. Gur, "Automated lung segmentation in X-ray computed tomography: development and evaluation of a heuristic threshold-based scheme," Acad. Radiol., vol. 10, no. 11, pp. 1224-1236, Nov. 2003.
[42]D. M. Denison, M. D. Morgan, and A. B. Millar, "Estimation of regional gas and tissue volumes of the lung in supine man using computed tomography," Thorax, vol. 41, no. 8, pp. 620-628, Aug. 1986.
[43]L. W. Hedlund, R. F. Anderson, P. L. Goulding, J. W. Beck, E. L. Effmann, and C. E. Putman, "Two methods for isolating the lung area of a CT scan for density information," Radiology, vol. 144, no. 2, pp. 353-357, Jul. 1982.
[44]T. Sandor, D. K. Kido, W. B. Hanlon, and C. L. Rumbaugh, "Automated calvaria analysis from computerized axial tomographic scans," Comput. Biomed. Res., vol. 14, no. 2, pp. 119-124, Apr. 1981.
[45]H. U. Kauczor, K. Heitmann, C. P. Heussel, D. Marwede, T. Uthmann, and M. Thelen, "Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask," Am. J. Roentgenol., vol. 175, no. 5, pp. 1329-1334, Nov. 2000.
[46]Y. Xu, M. Sonka, G. McLennan, J. Guo, and E. A. Hoffman, "MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies," IEEE Trans. on Med. Imag., vol. 25, no. 4, pp. 464-475, Apr. 2006.
[47]L. Vincent and P. Soille, "Watersheds in digital spaces: an efficient algorithm based on immersion simulations," IEEE Trans. on Pattern Anal. and Machine Intell., vol. 13, no. 6, pp. 583-598, Jun. 1991.
[48]N. Malpica, J. E. Ortuño, and A. Santos, "A multichannel watershed-based algorithm for supervised texture segmentation," Pattern Recognition Letters, vol. 24, no. 9-10, pp. 1545-1554, Jun. 2003.
[49]S. Jianbo and J. Malik, "Normalized cuts and image segmentation," IEEE Trans. on Pattern Anal. and Machine Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.
[50]S. Ukil and J. M. Reinhardt, "Anatomy-guided lung lobe segmentation in X-ray CT images," IEEE Trans. on Med. Imag., vol. 28, no. 2, pp. 202-214, Feb. 2009.
[51]Q. Wei, Y. Hu, J. H. MacGregor, and G. Gelfand, "Segmentation of Lung Lobes in Volumetric CT images for Surgical Planning of Treating Lung Cancer," in Proc. IEEE Int. Conf. on Eng. Medicine and Biol. Soc., New York, USA, Aug.-Sep. 2006, pp. 4869-4872.
[52]I. C. Sluimer, M. Prokop, I. Hartmann, and B. van Ginneken, "Automated classification of hyperlucency, fibrosis, ground glass, solid, and focal lesions in high-resolution CT of the lung," Med. Phys., vol. 33, no. 7, pp. 2610-2620, Jul. 2006.
[53]S. K. Tadikonda, M. Sonka, and S. M. Collins, "Region merging in medical image segmentation and interpretation," in Proc. IEEE Int. Conf. on Eng. Medicine and Biol. Soc., San Diego, USA, Oct. 1993, pp. 158-159.
[54]U. Raeth, D. Schlaps, B. Limberg, I. Zuna, A. Lorenz, G. van Kaick, W. J. Lorenz, and B. Kommerell, "Diagnostic accuracy of computerized B-scan texture analysis and conventional ultrasonography in diffuse parenchymal and malignant liver disease," J. Clin. Ultrasound, vol. 13, no. 2, pp. 87-99, Feb. 1985.
[55]S. Delorme, M. A. Keller-Reichenbecher, I. Zuna, W. Schlegel, and G. Van Kaick, "Usual interstitial pneumonia. Quantitative assessment of high-resolution computed tomography findings by computer-assisted texture-based image analysis," Invest. Radiol., vol. 32, no. 9, pp. 566-574, Sep. 1997.
[56]K. R. Heitmann, H. Kauczor, P. Mildenberger, T. Uthmann, J. Perl, and M. Thelen, "Automatic detection of ground glass opacities on lung HRCT using multiple neural networks," Eur. Radiol., vol. 7, no. 9, pp. 1463-1472, Nov. 1997.
[57]J. Malone, J. M. Rossiter, S. Prabhu, and P. Goddard, "Identification of disease in CT of the lung using texture-based image analysis," in Proc. IEEE Int. Conf. on Signals, Systems and Comput., Bristol, UK, Nov. 2004, pp. 1620-1624.
[58]Y. Uchiyama, S. Katsuragawa, H. Abe, J. Shiraishi, F. Li, Q. Li, C. T. Zhang, K. Suzuki, and K. Doi, "Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography," Med. Phys., vol. 30, no. 9, pp. 2440-2454, Sep. 2003.
[59]R. Uppaluri, G. McLennan, M. Sonka, and E. A. Hoffman, "Computer-based objective quantitative assessment of pulmonary parenchyma via x-ray CT," in Proc. SPIE Conf. on Med. Imag., San Diego, USA, Feb. 1998, pp. 377-383.
[60]R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for image classification," IEEE Trans. on Systems, Man and Cybern., vol. 3, no. 6, pp. 610-621, Nov. 1973.
[61]P. Korfiatis, C. Kalogeropoulou, A. Karahaliou, A. Kazantzi, S. Skiadopoulos, and L. Costaridou, "Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT," Med. Phys., vol. 35, no. 12, pp. 5290-5302, Dec. 2008.
[62]P. D. Korfiatis, A. N. Karahaliou, A. D. Kazantzi, C. Kalogeropoulou, and L. I. Costaridou, "Texture-based identification and characterization of interstitial pneumonia patterns in lung multidetector CT," IEEE Trans. on Information Technol. Biomed., vol. 14, no. 3, pp. 675-680, May 2010.
[63]D. H. Xu, A. S. Kurani, J. D. Furst, and D. S. Raicu, "Run-length encoding for volumetric texture," in Proc. IASTED Int. Conf. on Visual., Imag., and Image Processing, Marbella, Spain, Sep. 2004.
[64]A. H. Mir, M. Hanmandlu, and S. N. Tandon, "Texture analysis of CT images," IEEE Eng. in Medicine and Biol. Magazine, vol. 14, no. 6, pp. 781-786, Dec. 1995.
[65]D. S. Raicu, J. D. Furst, D. Channin, D. H. Xu, A. Kurani, and S. Aioanei, "A texture dictionary for human organs tissues' classification," in Proc. World Multi-conf. on Systemics, Cybermetics and Informatics, Orlando, USA, Jul. 2004.
[66]X. Tang, "Texture information in run-length matrices," IEEE Trans. on Image Processing, vol. 7, no. 11, pp. 1602-1609, Nov. 1998.
[67]M. M. Galloway, "Texture analysis using gray level run lengths," Computer Graphics Image Process, vol. 4, no. 2, pp. 172-179, Jun. 1975.
[68]B. B. Mandelbrot, The fractal geometry of nature, San Francisco, USA: W. H. Freeman & Company, 1982.
[69]N. Sarkar and B. B. Chaudhuri, "An efficient differential box-counting approach to compute fractal dimension of image," IEEE Trans. on Systems, Man and Cybern., vol. 24, no. 1, pp. 115-120, Jan. 1994.
[70]S. Peleg, J. Naor, R. Hartley, and D. Avnir, "Multiple resolution texture analysis and classification," IEEE Trans. on Pattern Anal. and Machine Intell., vol. 6, no. 4, pp. 518-523, Apr. 1984.
[71]C. C. Chen, J. S. DaPonte, and M. D. Fox, "Fractal feature analysis and classification in medical imaging," IEEE Trans. on Med. Imag., vol. 8, no. 2, pp. 133-142, Jun. 1989.
[72]E. L. Chen, P. C. Chung, C. L. Chen, H. M. Tsai, and C. I. Chang, "An automatic diagnostic system for CT liver image classification," IEEE Trans. on Biomed. Eng., vol. 45, no. 6, pp. 783-794, Jun. 1998.
[73]A. P. Pentland, "Fractal-based description of natural scenes," IEEE Trans. on Pattern Anal. and Machine Intell., vol. 6, no. 6, pp. 661-674, Jun. 1984.
[74]C. S. Fortin, R. Kumaresan, W. J. Ohley, and S. Hoefer, "Fractal dimension in the analysis of medical images," IEEE Eng. in Medicine and Biol. Magazine, vol. 11, no. 2, pp. 65-71, Jun. 1992.
[75]A. E. Jacquin, "Fractal image coding: a review," in Proc. IEEE, Oct. 1993, pp. 1451-1465.
[76]C. S. Tong and M. Pi, "Fast fractal image encoding based on adaptive search," IEEE Trans. on Image Processing, vol. 10, no. 9, pp. 1269-1277, Sep. 2001.
[77]R. Uppaluri, T. Mitsa, and J. Galvin, "Fractal analysis of high resolution CT images as a tool for the quantification of lung diseases," in Proc. SPIE Conf. on Med. Imag., San Diego, USA, Feb. 1995, pp. 133-142.
[78]S. Deguy and C. Debain, "Classification of texture images using multi-scale statistical estimators of fractal parameters," in Proc. British Machine Vision Conf., Bristol, UK, Sep. 2000.
[79]S. Prouteau, G. Ducher, P. Nanyan, G. Lemineur, L. Benhamou, and D. Courteix, "Fractal analysis of bone texture: a screening tool for stress fracture risk?," Eur. J. Clin. Invest., vol. 34, no. 2, pp. 137-142, Feb. 2004.
[80]D. Smutek, R. Sara, P. Sucharda, T. Tjahjadi, and M. Svec, "Image texture analysis of sonograms in chronic inflammations of thyroid gland," Ultrasound Med. Biol., vol. 29, no. 11, pp. 1531-1543, Nov. 2003.
[81]R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, Second ed., New York, USA: Wiley, 1999.
[82]W. Buntine, "Learning classification rules using bayes," in Proc. Int. Workshop on Machine Learning, New York, USA, Jun. 1989, pp. 94-98.
[83]A. A. Farag, A. El-Baz, G. Gimel'farb, and R. Falk, "Detection and recognition of lung abnormalities using deformable templates," in Proc. IEEE Int. Conf. on Pattern Recognition, Cambridge, UK, Aug. 2004, pp. 738-741.
[84]R. Uppaluri, T. Mitsa, M. Sonka, E. A. Hoffman, and G. McLennan, "Quantification of pulmonary emphysema from lung computed tomography images," Am. J. Respir. and Crit. Care Medicine, vol. 156, no. 1, pp. 248-254, Jul. 1997.
[85]Y. Xu, E. J. van Beek, Y. Hwanjo, J. Guo, G. McLennan, and E. A. Hoffman, "Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM)," Acad. Radiol., vol. 13, no. 8, pp. 969-978, Aug. 2006.
[86]W. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," Bulletin of Mathematical, vol. 5, no. 4, pp. 115-133, Dec. 1943.
[87]J. G. Taylor, The promise of neural networks, New York, USA: Springer-Verlag, 1993.
[88]V. N. Vapnik, The nature of statistical learning theory, New York, USA: Springer-Verlag, 1995.
[89]M. Kakar and D. R. Olsen, "Automatic segmentation and recognition of lungs and lesion from CT scans of thorax," Computerized Med. Imag. Graphics, vol. 33, no. 1, pp. 72-82, Jan. 2009.
[90]J. C. Bezdek, "A convergence theorem for the fuzzy ISODATA clustering algorithms," IEEE Trans. on Pattern Anal. and Machine Intell., vol. 2, no. 1, pp. 1-8, Jan. 1980.
[91]J. C. Dunn, "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters," J. Cybern., vol. 3, no. 3, pp. 32-57, 1973.
[92]F. Farrokhnia and A. K. Jain, "A multi-channel filtering approach to texture segmentation," in Proc. IEEE Int. Conf. on Comput. Vision and Pattern Recognition, Hawaii, USA, Jun. 1991, pp. 364-370.
[93]P. Korfiatis, A. Karahaliou, A. Kazantzi, C. Kalogeropoulou, and L. Costaridou, "Towards quantification of interstitial pneumonia patterns in lung multidetector CT," in Proc. IEEE Int. Conf. on BioInf. and BioEng., Athens, Greece, Oct. 2008, pp. 1-5.
[94]X. Ye, X. Lin, J. Dehmeshki, G. Slabaugh, and G. Beddoe, "Shape-based computer-aided detection of lung nodules in thoracic CT images," IEEE Trans. on Biomed. Eng., vol. 56, no. 7, pp. 1810-1820, Jul. 2009.
[95]D. W. Hosmer and S. Lemeshow, Applied logistic regression, Second ed., New York, USA: Wiley, 2000.
[96]N. Arshadi and I. Jurisica, "Data mining for case-based reasoning in high-dimensional biological domains," IEEE Trans. on Knowledge and Data Eng., vol. 17, no. 8, pp. 1127-1137, Aug. 2005.
[97]M. D. Schluchter, M. W. Konstan, M. L. Drumm, J. R. Yankaskas, and M. R. Knowles, "Classifying severity of cystic fibrosis lung disease using longitudinal pulmonary function data," Am. J. Respir. and Crit. Care Medicine, vol. 174, no. 7, pp. 780-786, Oct. 2006.
[98]G. R. Washko, G. M. Hunninghake, I. E. Fernandez, M. Nishino, Y. Okajima, T. Yamashiro, J. C. Ross, R. S. Estepar, D. A. Lynch, J. M. Brehm, K. P. Andriole, A. A. Diaz, R. Khorasani, K. D'Aco, F. C. Sciurba, E. K. Silverman, H. Hatabu, and I. O. Rosas, "Lung volumes and emphysema in smokers with interstitial lung abnormalities," New England J. Med., vol. 364, no. 10, pp. 897-906, Mar. 2011.
[99]L. A. Zadeh, "Fuzzy sets," Information and Contorl, vol. 8, pp. 338-353, 1965.
[100]L. A. Zadeh, "Fuzzy algorithms," Information and Control, vol. 12, no. 2, pp. 94-102, 1968.
[101]L. A. Zadeh, "Outline of a new approach to the analysis of complex systems and decision processes," IEEE Trans. on Systems, Man and Cybern., vol. 3, no. 1, pp. 28-44, Jan. 1973.
[102]M. Sugeno and G. T. Kang, "Structure identification of fuzzy model," Fuzzy Sets and Systems, vol. 28, no. 1, pp. 15-33, Oct. 1988.
[103]T. Takagi and M. Sugwno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. on Systems, Man and Cybern., vol. 15, no. 1, pp. 116-132, Jan. 1985.
[104]L. Zhang, E. A. Hoffman, and J. M. Reinhardt, "Atlas-driven lung lobe segmentation in volumetric X-ray CT images," IEEE Trans. on Systems, Man and Cybern., vol. 25, no. 1, pp. 1-16, Jan. 2006.
[105]M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, "A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data," IEEE Trans. on Med. Imag., vol. 21, no. 3, pp. 193-199, Mar. 2002.
[106]R. Hosseini, J. Dehmeshki, S. Barman, M. Mazinani, A. M. Jouannic, and S. Qanadli, "A fuzzy logic system for classification of the lung nodule in digital images in computer aided detection," in Proc. Int. Conf. on Digital Soc., St. Maarten, Feb. 2010, pp. 255-259.
[107]J. Cohen, "A coefficient of agreement for nominal scales," Educational and Psychological Measurement, vol. 20, no. 1, pp. 37-46, Apr. 1960.
[108]C. E. Metz, "ROC methodology in radiologic imaging," Invest. Radiol., vol. 21, no. 9, pp. 720-733, Sep. 1986.
[109]R. Shojaii, J. Alirezaie, and P. Babyn, "Automatic lung segmentation in CT images using watershed transform," in Proc. IEEE Int. Conf. on Image Processing, Toronto, Canada, Sep. 2005, pp. 1270-1273.
[110]H. Shikata, E. A. Hoffman, and M. Sonka, "Automated segmentation of pulmonary vascular tree from 3D CT images," in Proc. SPIE Conf. on Med. Imag., San Diego, USA, Feb. 2004, pp. 107-116.
[111]P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion," IEEE Trans. on Pattern Anal. and Machine Intell., vol. 12, no. 7, pp. 629-639, Jul. 1990.
[112]J. Serra, Image Analysis and Mathematical Morphology, Orlando, USA: Academic Press, 1984.
[113]H. Minkowski, "Volumen und oberfläche," Mathematische Annalen, vol. 57, no. 4, pp. 447-495, Dec. 1903.
[114]L. Vincent, "Morphological grayscale reconstruction in image analysis: applications and efficient algorithms," IEEE Trans. on Image Processing, vol. 2, no. 2, pp. 176-201, Apr. 1993.
[115]F. Prêteux, On a distance function approach for gray-level mathematical morphology, New York: Marcel Dekker, 1992.
[116]C. Fetita, F. Prêteux, and P. A. Grenier, "3D reconstruction of the bronchial tree in volumetric CT: application to CT bronchography," J. Electronic Imag., vol. 15, no. 2, pp. 023004-1:17, Oct. 2006.
[117]M. Ortner, C. Fetita, P. Y. Brillet, F. Prêteux, and P. A. Grenier, "High-throughput morphometric analysis of pulmonary airways in MSCT via a mixed 3D/2D approach," in Proc. SPIE Conf. on Med. Imag., Lake Buena Vista, USA, Feb. 2011.
[118]C. Fetita, O. Lucidarme, F. Prêteux, and P. A. Grenier, "CT hepatic venography: 3D vascular segmentation for preoperative evaluation," in Proc. Int. Conf. on Med. Image Computing and Comput. Assist. Interv. (MICCAI), Palm Springs, USA, Oct. 2005, pp. 830-837.
[119]S. G. Armato, 3rd, M. B. Altman, J. Wilkie, S. Sone, F. Li, K. Doi, and A. S. Roy, "Automated lung nodule classification following automated nodule detection on CT: a serial approach," Med. Phys., vol. 30, no. 6, pp. 1188-1197, Jun. 2003.
[120]J. Dehmeshki, J. Chen, M. V. Casique, and M. Karakoy, "Classification of lung data by sampling and support vector machine," in Proc. IEEE Int. Conf. on Eng. Medicine and Biol. Soc., San Francisco, USA, Sep. 2004, pp. 3194-3197.
[121]M. K. Farrugia, S. A. Raza, S. Gould, and K. Lakhoo, "Congenital lung lesions: classification and concordance of radiological appearance and surgical pathology," Pediatric Surg. Int., vol. 24, no. 9, pp. 987-991, Sep. 2008.
[122]I. Mariolis, P. Korfiatis, L. Costaridou, C. Kalogeropoulou, D. Daoussis, and T. Petsas, "Investigation of 3D textural features' discriminating ability in diffuse lung disease quantification in MDCT," in Proc. IEEE Int. Conf. on Imag. Systems and Tech., Thessaloniki, Greece, Jul. 2010, pp. 135-138.
[123]R. A. Ochs, J. G. Goldin, F. Abtin, H. J. Kim, K. Brown, P. Batra, D. Roback, M. F. McNitt-Gray, and M. S. Brown, "Automated classification of lung bronchovascular anatomy in CT using AdaBoost," Med. Image Anal., vol. 11, no. 3, pp. 315-324, Jun. 2007.
[124]L. Srensen, S. B. Shaker, and M. de Bruijne, "Quantitative analysis of pulmonary emphysema using local binary patterns," IEEE Trans. on Med. Imag., vol. 29, no. 2, pp. 559-569, Feb. 2010.
[125]T. W. Way, L. M. Hadjiiski, B. Sahiner, H. P. Chan, P. N. Cascade, E. A. Kazerooni, N. Bogot, and C. Zhou, "Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours," Med. Phys., vol. 33, no. 7, pp. 2323-2337, Jul. 2006.
[126]J. Yao, A. Dwyer, R. M. Summers, and D. J. Mollura, "Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification," Acad. Radiol., vol. 18, no. 3, pp. 306-314, Mar. 2011.
[127]X. Y. Cheng, A. Ohya, M. Natori, and M. Nakajima, "Boundary extraction method for three dimensional ultrasonic echo imaging using fuzzy reasoning and relaxation techniques," in Proc. IEEE Int. Conf. on Nuclear Science Symposium and Med. Imaging, San Francisco, USA, Oct.-Nov. 1993, pp. 1610-1614.
[128]A. Ronsenfeld, R. A. Hummel, and S. W. Zucker, "Scene labeling by relaxation operations," IEEE Trans. on Systems, Man and Cybern., vol. 6, no. 6, pp. 420-433, Jun. 1976.
[129]S. W. Zucker, R. A. Hummel, and A. Ronsenfeld, "An application of relaxation labeling to line and curve enhancement," IEEE Trans. on Comput., vol. 26, no. 4, pp. 394-403, Apr. 1977.
[130]E. H. Mamdani, "Application of fuzzy logic to approximate reasoning using linguistic synthesis," IEEE Trans. on Comput., vol. 26, no. 12, pp. 1182-1191, Dec. 1977.
[131]L. A. Zadeh, A theory of approximate reasoning, vol. 9, New York, USA: Wiley, 1979.
[132]C. Fetita, M. Ortner, P. Y. Brillet, F. Prêteux, and P. A. Grenier, "A morphological-aggregative approach for 3D segmentation of pulmonary airways from generic MSCT acquisitions," in Proc. Int. Workshop on Pulmonary Image Ana. , London, UK, Sep. 2009, pp. 215-226.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top