跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 16:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何威達
研究生(外文):Ho, Wei-Da
論文名稱:具有極佳的電磁干擾效應衰減效果之全數位展頻時脈產生器
論文名稱(外文):Design of All-Digital Spread-Spectrum Clock Generator with High EMI Reduction
指導教授:鍾菁哲
指導教授(外文):Chung, Ching-Che
口試委員:李順裕鍾菁哲盛鐸林泰吉
口試委員(外文):Lee, Shuenn-YuhChung, Ching-CheSheng, DuoLin, Tay-Jyi
口試日期:2012-07-02
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:111
中文關鍵詞:展頻時脈產生器全數位鎖相迴路電磁干擾
外文關鍵詞:Spread-Spectrum Clock GeneratorAll-Digital Phase-Locked LoopEMI ReductionMonotonic DCO
相關次數:
  • 被引用被引用:1
  • 點閱點閱:511
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
近年來,電磁干擾的議題越來越被重視。原因在於現今高速傳輸之電路通常會產生嚴重的電磁干擾,並容易影響周遭電路之運作。因此,為了防範電子產品中所衍生出來的電磁干擾,目前已有數種電子傳輸介面制訂相關規格以防制過於嚴重的電磁干擾,例如DisplayPort等數位顯示介面。
在本論文中,我們提出具有極佳電磁干擾效應衰減效果之全數位展頻時脈產生器。此全數位展頻時脈產生器可以達到真實展頻量之要求。此外,為了防止在展頻時遭遇製程、電壓、以及溫度變化而導致中心頻率偏移,我們以兩種不同版本之機制來維持頻率穩定度,其一為快速鎖定機制,另一機制為以計數器為基底來穩定頻率。
此快速鎖定之全數位展頻時脈產生器使用90奈米製程之標準元件庫實現,其運作電路之面積為200m × 200m。由量測結果得知,在270MHz頻率之電磁干擾效應衰減量於0.5%與2%之展頻量分別為14.64dB以及19.69dB。此外,該電路以1.0V電壓於270MHz頻率下之功率消耗為443W。另一版本之電路為以計數器為基底之全數位展頻時脈產生器。該電路之運作面積為85m × 85m並以65奈米製程之標準元件庫實現。其模擬之電磁干擾效應衰減量各以270MHz及162MHz作用頻率於0.5%與1.5%之展頻量分別為13.99dB與20.23dB。此電路以1.0V電壓於270MHz頻率下之功率消耗為163.9W。另外,此兩版電路因為是以標準元件所設計而成,因此可以輕易的移植至不同製程,所以本論文所提出之全數位展頻時脈產生器非常適合應用於現今之系統晶片。
In recent years, electromagnetic interference (EMI) problem is more and more popular. High speed transmission usually causes severe EMI, and that will influence the operation of neighbor circuits. Therefore, there are several devices have defined the specifications to restrict the EMI, such as DisplayPort which is a digital display interface.
In this thesis, an all-digital spread spectrum clock generator (ADSSCG) with high EMI reduction performance is presented. The proposed ADSSCG can provide a truly programmable spreading ratio. In order to maintain the frequency stability while performing triangular modulation, two frequency maintenance mechanisms are proposed to overcome the process, voltage, and temperature (PVT) variations. We proposed two versions of ADSSCG in this thesis, the fast-relocked ADSSCG and counter based ADSSCG.
The proposed fast-relocked ADSSCG is implemented in a standard performance 90nm CMOS process, and the active area is 200m × 200m. The experimental results show that the EMI reduction is 14.61dB with 0.5% spreading ratio and 19.69dB with 2% spreading ratio at 270MHz. The power consumption is 443W at 270MHz with 1.0V power supply. The other version is the counter-based ADSSCG. The active area is 85m × 85m with a standard performance 65nm CMOS process. The EMI reduction is 13.99dB with 0.5% spreading ratio at 270MHz and 20.23dB with 1.5% spreading ratio at 162MHz. For the power dissipation, it consumes 163.9W at 270MHz with 1.0V power supply. Moreover, these two versions are designed with standard cells, and this approach can be ported to different processes very easily, and it’s very suitable in system-on-chip (SoC) era.
Chapter 1 Introduction---------------------------------------------------1
1.1 Electromagnetic Interference Overview--------------------------------1
1.2 Conventional Techniques of EMI Mitigation----------------------------3
1.3 Introduction to Spread-Spectrum Clock Generator----------------------6
Chapter 2 Concepts of Spread-Spectrum Clock Generator--------------------9
2.1 Modulation Type------------------------------------------------------9
2.2 Relationship between Several SSCG Parameters and EMI Reduction-------11
2.2.1 Modulation Profile-------------------------------------------------11
2.2.2 Spreading Ratio----------------------------------------------------15
2.2.3 Modulation Frequency-----------------------------------------------16
2.2.4 Operation Frequency------------------------------------------------17
2.3 Modulation Method----------------------------------------------------17
2.3.1 Modulation on Reference Clock--------------------------------------18
2.3.2 Modulation on Oscillator-------------------------------------------19
2.3.3 Modulation on Output Clock-----------------------------------------20
2.3.4 Modulation on Frequency Divider------------------------------------21
2.4 Drawback of Conventional SSCG----------------------------------------23
2.4.1 SSCG with Analog Approach------------------------------------------23
2.4.2 SSCG with Digital Approach-----------------------------------------24
2.4.3 Conventional Programmable SSCG-------------------------------------26
Chapter 3 Architecture of All-Digital Spread-Spectrum Clock Generator----28
3.1 The Proposed Fast-relocked ADSSCG------------------------------------28
3.1.1 Fast-relocked Mechanism--------------------------------------------29
3.1.1.1 Difficulty of SSCG Stability-------------------------------------29
3.1.1.2 Advantage of the Proposed Fast-relocked Mechanism----------------31
3.1.1.3 Fast Relock with Stop Feedback Clock Technique-------------------34
3.1.2 Truly Programmable Spreading-Ratio Decision Method-----------------36
3.1.3 Overview of the Proposed Fast-relocked ADSSCG----------------------42
3.1.3.1 Block Diagram----------------------------------------------------42
3.1.4 SSC Controller-----------------------------------------------------44
3.1.5 Digital Loop Filter------------------------------------------------47
3.1.6 Delta-Sigma Modulator----------------------------------------------50
3.2 The Proposed Counter-Based ADSSCG------------------------------------53
3.2.1 Counter-Based Frequency Maintenance Mechanism----------------------54
3.2.2 Overview of the Proposed Counter-Based ADSSCG----------------------57
3.2.2.1 Block Diagram----------------------------------------------------57
3.2.3 Counter-Based SSC Controller---------------------------------------58
3.2.4 Digital Loop Filter Improvement------------------------------------61
Chapter 4 Circuit Design and Implementation of ADSSCG--------------------64
4.1 Phase and Frequency Detector-----------------------------------------64
4.1.1 Structure----------------------------------------------------------64
4.1.2 Simulation Results-------------------------------------------------65
4.2 Monotonic Low-Power Digital Controlled Oscillator--------------------66
4.2.1 Relationship between DCO and Spread-Spectrum Effect----------------66
4.2.2 Structure of Coarse-Tuning Circuit---------------------------------69
4.2.3 Structure of Fine-Tuning Circuit-----------------------------------71
4.2.4 Simulation Result--------------------------------------------------72
Chapter 5 Experimental Results-------------------------------------------75
5.1 Experimental Results of Proposed Fast-relocked ADSSCG----------------75
5.1.1 Simulation Result--------------------------------------------------75
5.1.2 Experimental Environment-------------------------------------------78
5.1.3 Measurement Result-------------------------------------------------81
5.2 Experimental Results of Proposed Counter-Based ADSSCG----------------87
5.2.1 Simulation Result--------------------------------------------------87
5.3 Comparison-----------------------------------------------------------90
Chapter 6 Conclusion and Future Works------------------------------------92
6.1 Conclusion-----------------------------------------------------------92
6.2 Future Works---------------------------------------------------------93
References---------------------------------------------------------------94
[1]Video Electronics Standards Association, “VESA DisplayPort Standard Version 1.1a,” Jan. 2008.
[2]Toshio Sudo, Hideki Sasaki, Norio Masuda, and Jams L. Drewniak, “Electromagnetic Interference (EMI) of System-on-Package (SOP),” IEEE Transactions on Advanced Packaging, vol. 27, no. 2, pp. 304-314, May 2004.
[3]Ayal Shoval, W. Martin Snelgrove, and David A. Johns, “A 100 Mb/s BiCMOS Adaptive Pulse-Shapping Filter,” IEEE Journal of Selected Areas in Communications, vol. 13, no. 9, pp. 1692-1702, Dec. 1995.
[4]Soon-Kyun Shin, Seok-Min Jung, Jin-Ho Seo, Myeong-Lyong Ko, and Jae-Whui Kim, “A slew-rate controlled output driver using PLL as compensation circuit,” IEEE Journal of Solid-State Circuits, vol. 38, no. 7, pp. 1227-1233, Jul. 2003.
[5]Hwang-Cherng Chow, and Wen-Wann Sheen, “Low Power LVDS Circuit for Serial Data Communications,” in Proceeding of IEEE Intelligent Signal Processing and Communication Systems, Dec. 2005, pp. 293-296.
[6]Keith B. Hardin, John T. Fessler, and Donald R. Bush, “Spread Spectrum Clock Generation for the Reduction of Radiated Emissions,” in Proceeding of IEEE International Symposium on Electromagnetic Compatibility, Aug. 1994, pp. 227-231.
[7]Simon Damphousse, Khalid Ouici, Ahmed Rizki, and Martin Mallinson, “All Digital Spread Spectrum Clock Generator for EMI Reduction,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 145-150, Jan. 2007.
[8]Hong-Yi Huang, Sheng-Feng Ho, and Li-Wei Huang, “A 64-MHz~1920-MHz Programmable Spread-Spectrum Clock Generator,” in Proceeding of IEEE International Symposium on Circuits and Systems, vol. 4, pp. 3363-3366, May 2005.
[9]Michael S. McCorquodale, Scott M. Pernia, Justin D. O’Day, Gordy Carichner, Eric Marsman, Nam Nguyen, Sundus Kubba, Si Nguyen, Jon Kuhn, and Richard B. Brown, “A 0.5-to-480MHz Self-Referenced CMOS Clock Generator with 90ppm Total Frequency Error and Spread-Spectrum Capability,” in Proceeding of IEEE Solid-State Circuits Conference, Feb. 2008, pp. 350-351.
[10]Serial ATA Workgroup, “Serial ATA: High Speed Serialized AT Attachment, Revision 1.0a,” Jan. 2003.
[11]Hewlett-Packard Company, Intel Corporation, Microsoft Corporation, NEC Corporation, ST-Ericsson, and Texas Instruments, “Universal Serial Bus 3.0 Specification, Revision 1.0,” Jun. 2011.
[12]PCI Express membership, “PCI Express Base Specification Revision 1.1,” Mar. 2005.
[13]I-Hui Hua, and Shen-Iuan Liu, “The Design and Implementation of 66/133/266MHz Spread Spectrum Clock Generators,” Master Thesis, Department of Electrical Engineering, National Taiwan University, Jun. 2002.
[14]Keith B. Hardin, john T. Fessler, and Donald R. Bush, “A Study of the Interference Potential of Spread Spectrum Clock Generation Techniques,” in Proceeding of IEEE International Symposium on Electromagnetic Compatibility, Aug. 1995, pp. 624-629.
[15]Hsiang-Hui Chang, I-Hui Hua, and Shen-Iuan Liu, “A Spread-Spectrum Clock Generator with Triangular Modulation,” IEEE Journal of Solid-State Circuits, vol. 38, no. 4, pp. 673-676, Apr. 2003.
[16]Eric Weisstein, “Fourier Series – Triangle Wave,” http://mathworld.wolfram.com/FourierSeriesTriangleWave.html.
[17]Keith Hardin, Robert A. Oglesbee, and Fred Fisher, “Investigation into the Interference Potential of Spread-Spectrum Clock Generation to Broadband Digital Communications,” IEEE Transactions on Electromagnetic Compatibility, vol. 45, no. 1, pp. 10-21, Feb. 2003.
[18]Davide De Caro, Carlo Alberto Romani, Nicola Petra, Antonio Giuseppe Maria Strollo, and Claudio Parrella, “A 1.27 GHz, All-Digital Spread Spectrum Clock Generator/Synthesizer in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1048-1060, May 2010.
[19]Sewook Hwang, Minyoung Song, Young-Ho Kwak, Inhwa Jung, and Chulwoo Kim, “A 3.5 GHz Spread-Spectrum Clock Generator with a Memoryless Newton-Raphson Modulation Profile,” IEEE Journal of Solid-State Circuits, vol. 47, no. 5, pp. 1199-1208, May 2012.
[20]Yi-Bin Hsieh, and Yao-Huang Kao, “A Fully Integrated Spread-Spectrum Clock Generator by Using Direct VCO Modulation,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 55, no. 7, pp. 1845-1853, Aug. 2008.
[21]Simon Damphousse, Khalid Ouici, Ahmed Rizki, and Marting Mallinson, “All Digital Spread Spectrum Clock Generator for EMI Reduction,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 145-150, Jan. 2007.
[22]Jenchien Hsu, and Chauchin Su, “Timing Jitter and Modulation Profile Extraction for Spread-Spectrum Clocks,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 4, pp. 847-856, Apr. 2010.
[23]Masaru Kokubo, Takashi Kawamoto, Takashi Oshima, Takayuki Noto, Masato Suzuki, Shigeyuki Suzuki, Takashi Hayasaka, Tomoaki Takahashi, and Jun Kasai, “Spread-Spectrum Clock Generator for Serial ATA using Fractional PLL Controlled by  Modulator with Level Shifter,” in Proceeding of IEEE Solid-State Circuits Conference, Feb. 2005, pp. 160-161.
[24]Sheng-You Lin, and Shen-Iuan Liu, “A 1.5 GHz All-Digital Spread-Spectrum Clock Generator,” IEEE Journal of Solid-State Circuits, vol. 44, no. 11, pp. 3111-3119, Nov. 2009.
[25]Minyoung Song, Sunghoon Ahn, Inhwa Jung, Yongtae Kim, Chulwoo Kim, “A 1.5 GHz Spread Spectrum Clock Generator with a 5000ppm Piecewise Linear Modulation,” in Proceeding of IEEE Custom Integrated Circuits Conference, Sep. 2008, pp. 455-458.
[26]Duo Sheng, Ching-Che Chung, and Chen-Yi Lee, “A Low-Power and Portable Spread Spectrum Clock Generator for SoC Applications,” IEEE Transactions on Very Large Scale Integration Systems, vol. 19, no. 6, pp. 1113-1117, Jun. 2011.
[27]Duo Sheng, Ching-Che Chung, and Chen-Yi Lee, “An All Digital Spread Spectrum Clock Generator with Programmable Spread Ratio for SoC Applications,” in Proceeding of IEEE Asia Pacific Conference on Circuits and Systems, Dec. 2008, pp. 850-853.
[28]Ahmed El Kholy, Ahmed Mokhtar, Fadi El Ghitany, Ahmed Badawy, Ahmed Essawy, Ahmed Naguib, Ahmed Ismail, and Ayman Ahmed, “A Wide Spreading Range Programmable Spread Spectrum Clock Generator Using a  Fractional-N PLL,” in Proceeding of IEEE North-East Workshop on Circuits and Systems and TAISA Conference, Jul. 2009, pp. 2845-2848.
[29]Ruchir Saraswat, Uwe Zillmann, Supriyanto Supriyanto, Guido Droege, and Ulrich Bretthauer, “Programmable Spread Spectrum Clock Generation Based On Successive Phase Selection Technique,” in Proceeding of IEEE International Symposium on Circuits and Systems, May 2008, pp. 2845-2848.
[30]Ching-Che Chung, and Chiun-Yao Ko, “A fast phase tracking ADPLL for video pixel clock generation in 65nm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 46, no.10, pp. 2300-2311, Oct. 2011.
[31]Robert Bogdan Staszewski, Dirk Leipold, Khurram Muhammad, and Poras T. Balsara, “Digitally Controlled Oscillator (DCO)-Based Architecture for RF Frequency Synthesis in a Deep-Submicrometer CMOS Process,” IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 50, no. 11, pp. 815-828, Nov. 2003.
[32]Ching-Che Chung, and Chen-Yi Lee, “An all-digital phase-locked loop for high-speed clock generation,” IEEE Journal of Solid-State Circuits, vol. 38, no. 2, pp. 347-351, Feb. 2003.
[33]Thomas Olsson, and Peter Nilsson, “A Digitally Controlled PLL for SoC Applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 5, pp. 751-760, May 2004.
[34]Duo Sheng, and Jhih-Ci Lan, “A Monotonic and Low-Power Digitally Controlled Oscillator with Portability for SoC Applications,” in Proceeding of IEEE International Midwest Symposium on Circuits and Systems, Aug. 2011.
[35]Michel Combes, Karim Dioury, and Alain Greiner, “A Portable Clock Multiplier Generator Using Digital CMOS Standard Cells,” IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 958-965, Jul. 1996.
[36]Won-Young Lee, and Lee-Sup Kim, “A Spread Spectrum Clock Generator for DisplayPort Main Link,” IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 58, no. 6, pp. 361-.365, Jun. 2011.
[37]Yao-Huang Kao, and Yi-Bin Hsieh, “A Low-Power and High-Precision Spread Spectrum Clock Generator for Serial Advanced Technology Attachment Applications Using Two-Point Modulation,” IEEE Transactions on Electromagnetic Compatibility, vol. 51, no. 2, pp. 245-254, May 2009.
[38]Kuo-Hsing Cheng, Cheng-Liang Hung, and Chih-Hsien Chang, “A 0.77 ps RMS Jitter 6-GHz Spread-Spectrum Clock Generator Using a Compensated Phase-Rotating Technique,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1198-1213, May 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊