|
[1] B. Balasundaram, Cohesive subgroup model for graph-based text mining, Proceedings of the 2008 IEEE Conference on Automation Science and Engineering, pp. 989{994, 2008. [2] B. Balasundaram, S. Chandramouli, and S. Trukhanov, Approximation algorithms for nding and partitioning unit-disk graphs into co-k- plexes, Optimization Letters, 4 (2010), pp. 311{320. [3] B. Balasundaram, S. Butenko, and I. V. Hicks, Clique relaxations in social network analysis: The maximum k-plex problem, Operations Research 59 (2011), pp. 133{142. [4] V. Batagelj and A. Mrvar, Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/ [5] V. Batagelj, Network/Pajek Graph Files. http://vlado.fmf.uni-lj.si/pub/networks/pajek/data/gphs.htm [6] N. Betzler, R. Bredereck, R. Niedermeier, and J. Uhlmann, On bounded-degree vertex deletion parameterized by treewidth, Discrete Applied Mathematics, 160 (2012), pp. 53{60. [7] R. van Bevern, H. Moser, and R. Niedermeier, Approximation and tidying{a problem kernel for s-plex cluster vertex deletion, Algorith- mica, 62 (2012), pp. 930{950. [8] M.-S. Chang, L.-J. Hung, and P.-C. Su, Exact and xed-parameter algorithms for problems related to 2-plex, Proceedings of ICSEC 2011, pp. 203{208, 2011. [9] M.-S. Chang, L.-J. Hung, P.-C. Su, Measure and conquer: analysis of a branch-and-reduce algorithm for the maximum bounded-degree- 1 set problem, in proceedings of the 29th Workshop on Combinatorial Mathematics and Computation Theory, pp. 136{145, 2012. [10] M.-S. Chang and L.-J. Hung, Moderately exponential time approximation algorithms for the maximum bounded-degree-1 set problem, in Proceedints of the 30th Workshop on on Combinatorial Mathematics and Computation Theory, pp. 23{30, 2013. [11] DIMACS: Maximum clique, graph coloring, and satisability, Second DIMACS implementation challenge (1995), http://dimacs.rutgers.edu/Challenges/. [12] I. Dinur and S. Safra, The importance of being biased, Proceedings of STOC 2002, pp. 33{42. [13] M. R. Fellows, J. Guo, H. Moser, and R. Niedermeier, A generalization of Nemhauser and Trotter's local optimization theorem, Journal of Computer and System Sciences, 77 (2011), pp. 1141{1158. [14] J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann, A more relaxed model for graph-based data clustering: s-plex cluster editing, SIAM Journal on Discrete Mathematics, 24 (2010), pp. 1662{1683. [15] J. Grossman, P. Ion, and R. de Castro, The Erd}os Number Project. http://www.oakland.edu/enp [16] C. Komusiewicz, F. Huner, H. Moser, and R. Niedermeier, Isolation concepts for eciently enumerating dense subgraphs, Theoretical Com- puter Science, 410 (2009), pp. 3640{3654. [17] B. McClosky and I.V. Hicks, Combinatorial algorithms for the maximum k-plex problem, Journal of Combinatorial Optimization, 23 (2012) pp. 29{49. [18] H. Moser, R. Niedermeier, and M. Sorge, Exact combinatorial algorithms and experiments for nding maximum k-plexes, Journal of Combinatorial Optimization, 24 (2012), pp. 347{373. [19] N. Nishmura, P. Ragde, and D. M. Thilikos, Fast xed-parameter tractable algorithms for nontrivial generalizations of vertex cover, Dis- crete Applied Mathematics, 152 (2005), pp. 229{245. [20] S. B. Seidman and B. L. Foster, A graph-theoretic generalization of the clique concept, The Journal of Mathematical Sociology 6 (1978), pp. 139{154. [21] S. Trukhannov, Novel approaches for solving large-scale optimization problems on graphs, PhD Thesis, A&M University, Texas, 2008. [22] B.Wu and X. Pei, A parallel algorithm for enumerating all the maximal k-plexes, Proceedings of PAKDD 2007, LNAI 4819 (2007), pp. 476{483.
|