跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 08:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馮玉堂
研究生(外文):Feng, Yu Tang
論文名稱:考量讀者價值於圖書館書籍推薦:以協同過濾為基礎
論文名稱(外文):Considering Reader Value In Library Book Recommendations: A Collaborative Filtering-Based Approach
指導教授:胡雅涵胡雅涵引用關係
指導教授(外文):Hu, Ya Han
口試委員:蔡志豐黃正魁
口試委員(外文):Tsai, Jih FengHuang, Cheng Kui
口試日期:2012-01-17
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊管理學系暨研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:推薦系統RFM模式協同過濾顧客生命價值
外文關鍵詞:Recommender SystemRFM ModelCollaborative FilteringCustomer Lifetime Value
相關次數:
  • 被引用被引用:1
  • 點閱點閱:705
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
推薦系統在電子商務領域扮演相當重要的角色,除可以協助銷售量的提昇,亦能夠針對顧客過去的偏好與交易行為,來提供個人化的服務,並增加顧客的滿意度。近年來,圖書館由圖書推薦系統的導入,來提高讀者使用圖書館的意願,以解決館藏使用率不高的問題,亦有相當不錯的成效。然而,在大學圖書館的環境下,讀者借閱動機不盡相同,例如課程中的作業或學期報告需要查找圖書館資料、或是於考試期間借閱參考書等,因此有些行為無法真正反映讀者的偏好。若未將讀者做篩選,而直接將所有讀者之借閱記錄投入進行圖書推薦系統之規則開發,將影響圖書推薦之品質,甚至產生無效的推薦。
為解決此問題,本研究首先透過圖書館借閱記錄找出忠實讀者群,運用行銷領域中衡量顧客價值的RFM模式,來進行讀者價值分析,並從中找出忠實讀者,接著再運用協同過濾的技術預測讀者-圖書借閱矩陣欄位之分數,本研究以MAE來衡量經過篩選的忠實讀者與未經篩選全部讀者之預測正確率的差異。

Recommended system in e-commerce plays a very important role, can help improve in sales, also able to provide personalized services from the past customers’ preferences and transactions, and increase customer satisfaction. In recent years, the library import recommendation system to increase the reader's willingness and solve the problem of library usage rate is not high, there are very good results. However, in the university library environment, readers borrowing motivation is different, such as course assignments or term papers need to find library materials, or borrow reference books during the examination period, so some of these acts can't really reflect the preferences of the reader .If the reader does not filtering, and direct use all reader's borrowing record into the recommended system of the book that to development the rules of books recommended system, will affect the quality of recommended books, and even ineffective recommendation.
To solve this problem, this study first identified the loyal readers from the Library borrowing record, use RFM model of marketing field to measure customer value, and analysis readers value that to find loyal readers, then use collaborative filtering technology forecast column scores of readers - books borrowing matrix, this study use MAE to measure the forecasts accuracy differences in have filtered loyal readers and unfiltered reader.

Abstract I
中文摘要 II
致謝 III
目次 IV
表目錄 VI
圖目錄 VII
第一章、緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 5
第二章、文獻探討 6
2.1 協同過濾推薦系統 6
2.2 圖書推薦之相關研究 9
2.3 RFM 15
第三章、研究方法 17
3.1 研究架構 17
3.2 RFM讀者價值分析 20
3.2.1 RFM讀者價值計算 20
3.2.2 RFM分群 24
3.3 協同過濾推薦 26
3.3.1建立讀者-圖書借閱矩陣 27
3.3.2等深離散化讀者-圖書借閱矩陣 29
3.3.3等深離散化後之讀者-圖書借閱矩陣中欄位值分數之預測 30
3.4平均絕對誤差(MAE)評估 33
第四章、實驗結果與分析 34
4.1 實驗流程 34
4.2 實驗結果 36
4.2.1忠實讀者與全部讀者平均絕對誤差評估 36
4.2.2分群方法、分群數、等深離散化結果評估 40
4.2.3綜合討論 50
第五章、研究結論與建議 52
5.1 研究結論 52
5.2研究貢獻 53
5.3 未來研究方向與建議 53
參考文獻 55


中文部分:
余明哲(2003)。圖書館個人化館藏推薦系統。國立交通大學資訊管理研究所。碩士論文,未出版,新竹市。
吳安琪(2001)。利用資料探勘技術及統計的方法增強圖書館的經營與服務。國立交通大學資訊科學研究所。碩士論文,未出版,新竹市。
林珊如、洪曉珊(1999)。網路書店使用者資訊行為之研究。資訊傳播與圖書館學,5(4),21-33。
林朝興、黃瑩荃(2006)。以顧客價值分析與權重漸進探勘來進行協力式音樂推薦。資訊科技與社會,6(1), 1~26。
資料探勘(2007)(施雅月、賴錦慧 譯)。台北市,台灣培生教育。
孫冠華(2000)。圖書館新書推薦之個人化服務方法。國立中山大學資訊管理研究所。碩士論文,未出版,高雄市。
梁伶君(1999)。大學生看圖書館行銷。國立成功大學圖書館館刊,4,103-109。
陳垂呈(2005)。利用資料探勘技術發掘圖書館個人化之書籍推薦。教育資料與圖書館學,87-107。
陳慶瑄(2000)。學習社群對電子圖書館個人化服務之影響。國立中正大學資訊科學研究所。碩士論文,未出版,嘉義縣。
黃承龍(2007)。具有「隨時間變異的顧客購買興趣」預測能力之多階層協同式推薦系統。國立高雄第一科技大學資訊管理系。碩士論文,未出版,高雄市。
黃建晟(2007)。應用顧客終身價值混合方法於圖書館館藏推薦。玄奘大學國際企業系。碩士論文,未出版,新竹市。
廖宜恩、許正怡、高國峰(2008)。「基於個人本體論與合作式過濾技術之圖書館推薦系統研究」。第七屆離島資訊技術與應用研討會,澎湖吉貝,48-55。
劉先烜(2002)。協同合作式社會網絡篩選:結合網頁結構探勘與協同合作式篩選的個人化機制。國立台灣大學資管所。碩士論文,未出版,台北市。
劉宛晶(2006)。植基於RFM分析法之產品購買週期的適時性推薦方法。朝陽科技大學資訊管理研究所。碩士論文,未出版,台中市。
鄭婕妤(2010)。基於RFM 分析法之顧客適性化產品推薦機制。朝陽科技大學資訊管理系。碩士論文,未出版,台中市。
戴玉旻(2002)。圖書館借閱記錄探勘系統。國立交通大學資訊科學研究所。碩士論文,未出版,新竹市。


英文部分:

Adomavicius, G., & Kwon, Y. (2007). New Recommendation Techniques for Multicriteria Rating Systems. IEEE Intelligent Systems , 22 (3), pp. 48-55.
Basilico., J., & Hofmann, T. (2004). Unifying collaborative and content-based filtering. Proceedings of the 21th international conference on Machine learning, (p. 9). Banff, Alberta, Canada.
Bradley, K., & Smyth, B. (2001). Improving Recommendation Diversity. Proceedings of the 12th Irish Conference on Artificial Intelligence and Cognitive Science, (pp. 85-94). Maynooth, Ireland.
Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence, (pp. 43-52).
Bult, J. R., & Wansbeek, T. (1995). Optimal selection for direct mail. maketing science , 14 (4), pp. 378-394.
Chen, R. S., Tsai, Y. S., Yeh, K. C., Yu, D. H., & Bak-Sau, Y. (2008). Using Data Mining to Provide Recommendation Service. WSEAS Transactions on Information Science and Applications , 5 (4).
Gao, F., Xing, C., Du, X., & Wang, S. (2007). Personalized Service System Based on Hybrid Filtering for Digital Library. Tsinghua Science and Technology , 12 (1), pp. 1-8.
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM , 35 (12).
Han, P., Xie, B., Yang, F., & Shen, R. (2004). A scalable P2P recommender system based on distributed collaborative filtering. Expert Systems with Applications , 27 (2), pp. 203-210.
Huang, Z., Chung, W., Ong, T. H., & Chen, H. (2002). A graph-based recommender system for digital library. Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries, (pp. 65-73). Portland, Uregon, USA.
Hughes, M. (1994). Strategic Database Marketing. Chicago: Probus .
Jung, S., Harris, K., Webster, J., & Herlocker, J. (2004). SERF: integrating human recommendations with search. Proceedings of the 13th ACM international Conference on information and Knowledge Management, (pp. 571-580). New York, Washington.
Konstan, J. A., Miller, B. N., Maltz, D., Herlocke, J. L., Gorgan, L. R., & Riedl, J. (1997). GroupLens: Applying collaborative filtering to Usenet news. Communications of the ACM , 40 (3), pp. 77-87.
Korenius, T., Laurikkala, J., & Juhola, M. (2007). On principal component analysis cosine and euclidean measures in information retrieval. Information Sciences , 177 (22), pp. 4893-4905.
Li, H., Gu, Y., & Koul, S. (2009). A Review of Digital Library Book Recommendation Model. Retrieved from http://ssrn.com/abstract=1513415
Liao, I. E., Liao, S. H., Kao, K. F., & Harn, I. F. (2006). A Personal Ontology Model for Library Recommendation System. Computer Science , 4412, pp. 173-182.
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Computer Society , pp. 1089-7801.
Liu, D. R., & Shih, Y. Y. (2005). Integrating AHP and data mining for product recommendation based on customer lifetime value. Information and Management , 42 (3), pp. 387-400.
Liu, D. R., & Shih, Y. Y. (2008). Product recommendation approaches: Collaborative filtering via customer lifetime value and customer demands. Expert Systems with Applications: An International Journal , 35, pp. 350-360.
Maneewongvatana, S., & Maneewongvatana, S. (2010). A recommendation model for personalized book lists. Proceedings of the 10th International conference on Communications and Information Technologies, (pp. 389-394). Tokyo, Japan.
Mooney, R. J., & Roy, L. (2000). Content-based book recommending using learning for text categorization. Proceedings of the 5th ACM Conference on Digital Libraries, (pp. 195-204). San Antonio, TX.
Porcel, C., Moreno, J. M., & Herrera-Viedma, E. (2009). A multi-disciplinar recommender system to advice research resources in university digital libraries. Expert Systems with Applications , 36 (10), pp. 12520-12528.
Rucher, J., & Polanco, M. J. (1997). Personalized navigation for the Web. Communications of the ACM , 40 (3), pp. 73-75.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th international conference on World Wide Web, (pp. 285-295). Hong Kong, China.
Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-Commerce Recommendation Applications. Data Mining and Knowledge Discovery , 5 (1-2), pp. 115-153.
Schafer, J. B., Konstan, J. A., & Riedl, J. (1999). Recommender Systems in E-Commerce. Proceedings of the1st ACM Conference on Electronic Commerce, (pp. 158-166). Denver, Colorado, USA.
Serrano-Guerrero, J., Herrera-Viedma, E., Olivas, J. A., Cerezo, A., & Romero, F. P. (2011). A google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0. Information Sciences , 181 (19), pp. 1503-1516.
Shardanand, U., & Maes, P. (1995). Social Information Filtering: Algorithms for Automating Word of Mouth. Proceedings of the Conference on Human Factors in Computing Systems (CHI95), (pp. 210-217). Denver, Colorado, USA.
Sitanggang, I. S., Husin, N. A., Agustina, A., & Mahmoodian, N. (2010). Sequential pattern mining on library transaction data. Information Technology , pp. 1-4.
Song, Y. C., & Fang, Y. F. (2010). Application research of association analysis with Clementine. Proceedings of the 2nd International Conference on Software Engineering and Data Mining (SEDM), (pp. 445-449). Chengdu, China.
Whitney, C., & Schiff, L. (2006). The Melvyl Recommender Project: Developing Library Recommendation Services. D-Lib Magazine, 12(12). Retrieved from http://www.dlib.org/dlib/december06/whitney/12whitney.htm
Yang, X., Zeng, H., & Huang, Y. (2009). ARTMAP-based data mining approach and its application to library book recommendation. Intelligent Ubiquitous Computing and Education , pp. 26-29.
Zhu, Z., & Wang, J. Y. (2007). Book recommendation service by improved association rule mining algorithm. Proceedings of the 6th International IEEE Conference on Machine Learning and Cybernetics, (pp. 3864-3869). Hong Kong, China.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top