跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳學武
研究生(外文):Chen, Hsuehwu
論文名稱:小型化寬諧波抑制功率分配器與不等功率雙頻帶枝幹耦合器設計
論文名稱(外文):Design of Compact Power Divider with Broad-Band Harmonic Suppression and Unequal Power Dual-Band Branch-Line Coupler
指導教授:湯敬文
指導教授(外文):Tang, Chingwen
口試委員:張志揚毛紹綱許崇宜湯敬文
口試委員(外文):Chang, ChiyangMao, ShaugangHsu, Chung-I G.Tang, Chingwen
口試日期:2012-07-13
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:96
中文關鍵詞:小型化諧波抑制雙頻帶
外文關鍵詞:compactharmonic Suppressiondual band
相關次數:
  • 被引用被引用:0
  • 點閱點閱:482
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩個部分。第一部分提出小型化寬諧波抑制功率分配器,使用T型電路實現小型化的效果,再利用開路殘段加入兩個傳輸零點,增加頻帶的選擇性與諧波抑制頻寬,最後使用全波電磁模擬軟體進行模擬輔助。
第二部分為不等功率雙頻帶枝幹耦合器,利用耦合線的方式產生雙頻帶的效果,藉由不同的奇耦模阻抗或是耦合線長度得到不同的頻率比,依照耦合線的長度不同與輸出埠可分為四種情形討論,接著再使用不等長的耦合線增加雙頻帶的頻率比,並且利用電容補償的方式補償耦合線奇偶模相速不同造成的誤差。
上述電路都經過實際電路製作與量測,並將量測結果與軟體之模擬進行比較之後,驗證兩者具有良好的一致性。

This thesis included two parts. The first part is design of compact power divider with harmonic suppression, Using T-type model reduce circuit size. Moreover add open stub to generate two transmission zeros for good selectivity and harmonic suppression bandwidth. Finally, the full-wave electromagnetic simulator is utilized as the design assistance.
Second part is unequal dual-band branch line coupler, The structure of this dual-band coupler is composed of three coupled lines, according to electric length of coupled lines have four case to discuss, unequal electric length can provide higher frequency ratio, Because the unequal odd-mode and even-mode phase velocity of the coupled line, the inter-digital capacitors at the source and load ports.
All circuits in this thesis are simulated with full-wave electromagnetic simulator, and these circuits have been fabricated and measured. The matched results between electromagnetic simulation and measurement can demonstrate the availability of all proposed circuits.

摘要 I
Abstract II
目錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究動機 1
1.2文獻探討 2
1.3論文架構 3
第二章 傳統威金森功率分配器 5
2.1 威金森功率分配器簡介 5
2.2 等功率威金森功率分配器分析 5
第三章 小型化寬諧波抑制功率分配器設計 9
3.1 功率分配器分析 9
3.1.1 T 型等效電路與各電氣長度影響 10
3.1.2 F 型等效電路與各電器長度影響 13
3.1.3 各段傳輸線阻抗影響 15
3.2 F 型等效電路分析 18
3.3 設計實例 20
3.3.1 寬諧波抑制功率分配器理想電路模擬 21
3.3.2 寬諧波抑制功率分配器電路布局 22
3.3.3 寬諧波抑制功率分配器電磁模擬、量測與電路照相圖 24
第四章 枝幹耦合器與四埠網路分析 27
4.1 枝幹耦合器理論 27
4.2 奇偶模分析法 28
4.2.1 雙埠網路 28
4.2.2 四埠網路 31
第五章 不等功率雙頻帶枝幹耦合器設計 39
5.1 耦合線枝幹耦合器分析 40
5.1.2 耦合線枝幹耦合器奇偶模分析 41
5.1.3 耦合線枝幹耦合器最佳解變數討論 44
5.1.4 耦合線枝幹耦合器阻抗求解 45
5.2 耦合線枝幹耦合器 Case 1 設計實例 46
5.3 耦合線枝幹耦合器 Case 2 設計實例 52
5.4 耦合線枝幹耦合器分析 57
5.4.1 耦合線枝幹耦合器阻抗求解 60
5.5 耦合線枝幹耦合器 Case 3 設計實例 61
5.5.1 耦合線枝幹耦合器 Case 3 電路模擬 62
5.5.2 耦合線枝幹耦合器 Case 3 電路布局與照相圖 63
5.5.3 耦合線枝幹耦合器 Case 3 電磁模擬 64
5.5.4 耦合線枝幹耦合器 Case 3 量測結果 65
5.6 耦合線枝幹耦合器 Case 4 設計實例 66
5.6.1 耦合線枝幹耦合器 Case 4 電路模擬 67
5.6.2 耦合線枝幹耦合器 Case 4 電路布局與照相圖 68
5.6.3 耦合線枝幹耦合器 Case 4 電磁模擬 69
5.6.4 耦合線枝幹耦合器 Case 4 量測結果 70
5.7 四個設計實例比較 71
第六章 結論 73
參考文獻 75

[1] E. J. Wilkinson, “An N-way hybrid power divider,” IRE Trans. Microwave Theory Tech., vol. 8, no. 1, pp. 116–118, Jan. 1960.
[2] J. Wang, B.-Z. Wang, Y.-X. Guo, L. C. Ong, and S. Xiao, “Compact slow-wave microstrip rat-race ring coupler,” Electron. Lett., vol. 43, pp. 111–113, Jan. 18 2007.
[3] J. Wang, B. Z. Wang, Y. X. Guo, L. Ong, and S. Xiao, “A compact slow-wave microstrip branch-line coupler with high performance,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 501–503, Jul. 2007.
[4] J. He, B.-Z. Wang, and W. Shao, “Compact power divider embedded with zigzag microstrip slow-wave structures,” Electron. Lett., vol. 45, pp. 62–63, Jan. 2009.
[5] R. Ghatak, P. Sarkar, R. K. Mishra, and D. R. Poddar, “A compact UWB bandpass filter with embedded SIR as band notch structure,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 5, pp. 261–263, May 2011.
[6] S. Karimian, Z. Hu, and M. A. Abdalla, “Compact half-wavelength metamaterial stepped impedance resonator (SIR),” in IEEE Int. Antennas and Propagation (APSURSI), pp. 2951–2953, Jul. 2011.
[7] S. Gao, H. H. Hu, and Z. Y. Xiao, “A novel compact dual-band bandpass filter using SIRs with open-stub line,” in Microwave Conference, China-Japan Joint, pp. 464–466, Sep. 2008.
[8] C. M. Lin, H. H. Su, J. C. Chiu, and Y. H. Wang, “Wilkinson power divider using microstrip EBG cells for the suppression of harmonics,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 700–702, Oct. 2007.
[9] D. J. Woo and T. L. Lee, “Suppression of harmonics in Wilkinson power divider using dual band rejection by asymmetric DGS,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 2139–2144, Jun. 2005.
[10]C. W. Wang, K. H. Li, C. J. Wu, and T. G. Ma, “A miniaturized Wilkinson power divider with harmonic suppression characteristics using planar artificial transmission lines,” in Asia-Pacific Microwave Conf., pp. 1–4, Dec. 2007.
[11]K. H. Yi and Bongkoo Kang, “Modified Wilkinson power divider for nth harmonic suppression” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 5, pp. 178–180, May 2003.
[12]J. Wang, J. Ni, Y. X. Guo, and D. Fang, “Miniaturized microstrip Wilkinson power divider with harmonic suppression,” in IEEE MTT-S Int. Art of Miniaturizing RF and Microwave Passive Components, Dec. 2008, pp. 227–229.
[13]J. Wang, J. Ni, Y. X. Guo, and Dagang Fang, “Miniaturized microstrip Wilkinson Power Divider with Harmonic Suppression,” IEEE Microw. Wireless Compon. Let., vol. 19, no. 7, pp. 440–442, Jul. 2009
[14]B. Zhou, W. Sheng, and H. Wang, “Harmonics suppression of wilkinson power divider using bond wires with adjustable rejection bands,” Microw. Opt. Technol. Lett., vol. 54, pp.775–777, Mar. 2012.
[15]J. Reed and G. J. Wheeler, “A method of analysis of symmetrical four-port networks,” IRE Trans. Microw. Theory Tech., vol. 4, no. 4, pp. 246–252. Oct. 1956.
[16]R. Levy and L. Lind, “Synthesis of symmetrical of branch-guide directional couplers,” IEEE Trans. Microw. Theory Tech., vol. 19, no. 2, pp. 80–89, Feb. 1968.
[17]R. Levy, “Directional couplers,” in Advances in Microwaves. New York: Academic, vol. I, pp. 115–209, 1966.
[18]M. DeVincentis, C. Caloz, and T. Itoh, “Arbitrary dual-band components using composite right/left-handed transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1142–1149, Ap. 2004.
[19]H. Zhang and K. J. Chen, “A stub tapped branch-line coupler for dual-band operations,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 106–108, Feb. 2007.
[20]K. S. Chin, K. M. Lin, Y. H. Wei, T. H. Tseng, and Y. J. Yang “Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1213–1221, May 2010.
[21]M. J. Park and B. Lee, “Dual-band, cross coupled branch line coupler,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 655–657, Oct. 2005.
[22]J. Chung, B. Lee, and M. J. Park, “Branch line coupler with cross coupling,” in 34th European Microwave Conf., vol. 1, Oct. 2004, pp. 285–288.
[23]V. K. Tripathi, H. B. Lunden, and J. P. Starski, “Analysis and design of branch-line hybrids with coupled lines,” IEEE Trans. Microw. Theory Tech., vol. 32, no. 4, pp. 427–432, Apr. 1984.
[24]Y. Lim and H. Y. Lee, “Novel miniaturized branch-line coupler using bond-wire slow-wave structure,” in Asia-Pacific Microwave Conf., 2008, pp. 1–4.
[25]C. W. Tang, M.G. Chen, and J. W. Wu, “Realization of ultra-compact planar microstrip branch-line couplers with high-impedance open stubs,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 995–998.
[26]C. W. Tang and M.G. Chen, “Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1926–1934, Sep. 2007.
[27]C. W. Tang, M. G. Chen, and C. H. Tsai, “Miniaturization of microstrip branch-line coupler with dual transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 3, pp. 185–187, Mar. 2008.
[28]C. W. Tang and M. G. Chen, “Design of multipassband microstrip branch-line couplers with open stubs,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 196–204, Jan. 2009.
[29]S. Niyogi, J. Scott, and K. Ghorbani, “RF vector sum phase shifter using a novel variable directional coupler,” in Asia-Pacific Microwave Conf., 2008.
[30]K. Ghorbani, A. Mitchell, R. B. Waterhouse, and M. W. Austin, “A novel wide-band tunable RF phase shifter using a variable optical directional coupler,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 5, pp. 645–648, May 1999.
[31]P. Akkaraekthalin, C. Sawangnate, and V. Vivek, “Conductorbacked coplanar waveguide directional coupler and its use for a varactor-tuned 90◦ phase shifter,” in IEEE APCCAS 2000 Circuits and Systems, Dec. 2000, pp. 525–528.
[32]F. Ferrero and G. Jacquemont, “A tunable quasi-lumped microstrip coupler and RF applications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 1197–1200.
[33]H. Hayashi, M. Muraguchi, Y. Umeda, and T. Enoki, “A high-Q broad-band active inductor and its application to a low-loss analog phase shifter,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2369–2374, Oct. 1996.
[34]K. Sachse and A. Sawicki, “Quasi-ideal multilayer two- and three-strip directional couplers for monolithic and hybrid MICs,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1873–1882, Sep. 1999.
[35]M. D. Prouty and S. E. Schwarz, “Hybrid couplers in bilevel microstrip,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 11, pp. 1939–1944, Nov. 1993.
[36]S. Zhang, J. Madic, P. Bretchko, J. Mokoro, and R. Shumovich, “A novel power-amplifier module for quad-band wireless handset applications,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 11, pp. 2203–2210, Nov. 2003.
[37]A. K. Fung, D. Dawson, L. Samoska, K. Lee, C. Oleson, and G. Boll, “On-wafer vector network analyzer measurements in the 220-325 GHz frequency band,” in IEEE MTT-S Int. Microw. Symp. Dig., 2006, pp. 1931–1934.
[38]W. R. Deal, X. B. Mei, V. Radisic, M. D. Lange, W. Yoshida, P.-H. Liu, J. Uyeda, M. E. Barsky, A. Fung, T. Gaier, and R. Lai, “Development of sub-millimeter wave power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2719–2726, Dec. 2007.
[39]C. Y. Chi and G. M. Rebeiz, “Design of Lange-couplers and single-sideband mixers using micromachining techniques,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 2, pp. 291-294, Feb. 1997.
[40]H. Y. La and Y. C. Chiang,” A novel structure of single-side-band mixer with adopting dual-band quadrature coupler,” in Asia-Pacific Microwave Conf., Dec. 2009.
[41]D. P. Andrews and C. S. Aitchison, “Wide-band lumped-element quadrature 3-dB couplers in microstrip,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2424–2431, Dec. 2000.
[42]S. K. Korotky and R. M. de Ridder, “Dual parallel modulation scheme for low-distortion analog optical transmission,” IEEE J. Select. Areas Commun., vol. 8, no. 7, pp. 1377–1381, Jul. 1990.
[43]R. F. Tavlykaev and R. V. Ramaswamy, “Highly linear Y-fed directional coupler modulator with low intermodulation distortion,” J. Lightwave Technol., vol. 17, pp. 282–291, Feb. 1999.
[44]S. Thaniyavarn, “Modified 1×2 directional coupler waveguide modulator,” Electron. Lett., vol. 22, no. 18, pp. 941–942, 1986.
[45]H. F. Schlaak, “Modulation behavior of integrated optical directional couplers,” J. Opt. Commun., vol. 5, no. 4, pp. 122–131, 1984.
[46]S. L. March, “Phase velocity compensation in parallel-coupled microstrip,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1982, pp. 410–412.
[47]D. M. Pozar, Microwave engineering, 2nd ed. New York: Wesley, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top