跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 07:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭子政
研究生(外文):Cheng,Tzucheng
論文名稱:多頻帶功率分配器與寬截止頻帶濾波器
論文名稱(外文):Design Of Multi-band Power Dividers And Wide Stopband Filters
指導教授:湯敬文
指導教授(外文):Tang,Chingwen
口試委員:張志揚毛紹剛許崇宜
口試委員(外文):Chang,ChyangMao,ShaugangHsu, Chungi
口試日期:2012-07-13
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:雙頻帶相移器雙頻帶功率分配器三頻帶功率分配器J 反轉子諧波抑制帶止濾波器雙頻帶通濾波
外文關鍵詞:dual-band phase shifterdual-band power dividertri-band power dividerJ inverterharmonic suppressionbandstop filterdual band pass filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩部份。第一部份提出由耦合線串接短路殘段構成的雙頻帶相移器來實現雙頻帶功率分配器,由雙頻帶相移器串接四分之一波長傳輸線可以產生額外的頻帶來實行三頻帶功率分配器,分析方式採用雙頻帶相移器等效成四分之一波長傳輸線,經由推導得到四分之一波長傳輸線抗與雙頻帶相移器耦合線奇偶模阻抗的關係。

第二部份則是介紹兩個寬頻濾波器的設計,第一個寬頻濾波器的分析方式採用J 反轉子,並且經由適當的選擇短路殘段的電器長度以及帶止濾波器的阻抗值來控制傳輸零點以達到諧波抑制;第二個則是雙頻帶通濾波器並且經由帶止濾波器來抑制諧波。

上述電路的設計,均使用全波電磁模擬軟體IE3D 進行模擬輔助,並實際製
作電路進行量測。經由電磁模擬與量測的比較結果,兩者具有較好的一致性。
There are two parts in this thesis. The introduction in the first part is design of dual-band power divider employing dual-band phase shifter is composed by a coupled line with short-stub. Derive tri-band power divider by using quarter wavelength transmission line at the input or output port of dual-band phase shifter. I use quarter wavelength transmission line to substitute for dual-band phase shifter. Derive from the solutions relating quarter wavelength transmission line impedance and odd mode and even mode impedance of dual-band phase shifter.

In the second part, the wideband bandpass filters are presented, in the first filter, we analyzed the circuit by J inverter, design the electrical length of the short stub and choose the impedance of the band stop filter appropriately to control the transmission zeros to suppress the spurious band. The second filter is dual band pass filter, to choose band stop filter to suppress the spurious band.

All the above mentioned circuits are simulated by using full-wave
electromagnetic simulator IE3D, and the prototype of these circuits are fabricated and measured. The match well result between electromagnetic simulation and measured data can evidence the availability of all proposed circuits.
摘要.......................................................................... I
Abstract.....................................................................III
目錄...........................................................................V
圖目錄.......................................................................VII
表目錄....................................................................... XI
第一章 簡介....................................................................1
1.1 研究動機.................................................................1
1.2 論文架構................................................................ 2
第二章 濾波器設計理論......................................................... 3
2.1 簡介.................................................................... 3
2.2 介入損耗法.............................................................. 3
2.2.1 巴特沃茲(Butterworth)濾波器......................................... 4
2.2.2 柴比雪夫(Chebyshev)濾波器........................................... 5
2.2.3 低通濾波器雛形...................................................... 6
2.3 導納及阻抗反轉子(J- and K-inverters) ................................... 8
2.4 耦合線等效電路......................................................... 14
2.5 測試夾具量測介紹....................................................... 19
第三章 多頻帶功率分配器設計.................................................. 21
3.1 簡介.................................................................. 21
3.2 雙頻帶相位偏移器....................................................... 22
3.3 雙頻帶功率分配器....................................................... 23
3.3.1 奇偶模分析......................................................... 24
3.3.2 設計實例-雙頻帶功率分配器......................................... 27
3.4 應用 - 三頻帶功率分配器................................................ 29
3.4.1 奇偶模分........................................................... 30
3.4.2 設計實例-三頻帶功率分配器......................................... 31
第四章 寬截止頻帶帶通濾波器.................................................. 37
4.1 簡介................................................................... 37
4.2 帶止寬頻濾波器分析..................................................... 38
4.2.1 帶止濾波器之奇偶模分析............................................. 40
4.2.2 短路殘斷零點產生機制............................................... 41
4.3 帶止濾波器之等效模型................................................... 41
4.4 濾波器以J 反轉子等效設計與分析......................................... 44
4.5 設計實例-寬截止頻帶通濾波器設計........................................ 49
第五章 雙頻帶帶通濾波器設計.................................................. 53
5.1 簡介................................................................... 53
5.2 耦合線端串接等長開路殘段的電路特性..................................... 54
5.2.1 奇偶態模分析....................................................... 55
5.2.2 零點分析........................................................... 57
5.3 J-inverter 等效電路.................................................... 58
5.4 設計實例............................................................... 64
第六章 結論.................................................................. 71
參考文獻..................................................................... 73
[1] D. M. Pozar, Microwave Engineering, 3nd edition, John Wiley & Sons, 2005.

[2] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Micorewave
Applications, John Wiley & Sons, 2001.

[3] R. E. Collin, Foundations for Microwave Engineering, McGraw Hill, 2nd edition,
1992.

[4] E. M. T. Jones, “Coupled-strip-transmission-line filters and directional couplers,”IEEE Trans. Microw. Theory Tech., vol. 4, no. 2, pp. 75–81, Apr. 1956.
[5] I. H. Lin, M. DeVincentis, C. Caloz, and T. Itoh, “Arbitrary dual-band
components using composite right/left-handed transmission lines,” IEEE Trans.
Microw. Theory Tech., vol. 52, no. 4, pp. 1142–1149, Apr. 2004.

[6] M. J. Park and B. Lee, “A dual-band Wilkinson power divider,” IEEE Microw.
Wireless Compon. Lett., vol. 18, no. 2, pp. 85–87, Feb. 2008.

[7] M. J. Park and B. Lee, “Wilkinson power divider with extended ports for
dual-band operation,” Electronics Lett., vol. 44, no. 15, pp. 916–917, Jul. 2008.

[8] S. Srisathit, M. Chongcheawchamnan, and A. Worapishet, “Design and
realisation of dual-band 3 dB power divider based on two-section
transmission-line topology,” Electronics Lett., vol. 39, no. 9, pp. 723–724, May
2003.

[9] X. Tang and K. Mouthaan, “Compact dual-band power divider with single
allpass coupled lines sections,” Electronics Lett., vol. 46, no. 10, pp. 686–689, May 2010.

[10] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled
stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol.
28, no.12, pp. 1413–1417, Dec. 1980.

[11] U. Y. Kongpop, E. J.Wollack, T. A. Doiron, J. Papapolymerou, and J. Laskar, “A planar bandpass filter design with wide stopband using double split-end
stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no.
3, pp. 1237–1244, Mar. 2006.

[12] S. F. Chang, Y. H. Jeng, and J. L. Chen, “Dual-band step-impedance bandpass
filter for multimode wireless LANs,” Electronics Lett., vol.40, no. 1, pp. 38–39, Jan. 2004.

[13] C. W. Tang, “Design of a microstrip filter using multiple capacitively loaded coupled lines,” IET Microw. Antennas Propag., vol. 1, no. 3, pp. 651–657, Jun. 2007

[14] C. H. Wu, C. H. Wang, and C. H. Chen, “Stopband-extended balanced bandpass
filter using coupled stepped-impedance resonators,” IEEE Microw. Wireless
Compon. Lett., vol. 17, no. 7, pp. 507–509, Jul. 2007

[15] Y. M. Chen, S. F. Chang, C. C. Chang, and T. J. Hung, “Design of
stepped-impedance combline bandpass filters with symmetric insertion-loss
response and wide stopband range,” IEEE Trans. Microw. Theory Tech., vol. 55,
no. 10, pp. 2191–2199, Oct. 2007.

[16] C. L. Hsu and J. T. Kuo, “A two-stage SIR bandpass filter with an ultra-wide
upper rejection band,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp.
34–36, Jan. 2007.

[17] J. T. Kuo, C. L. Hsu, and E. Shih, “Compact planar quasi-elliptic function filter with inline stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1747–1755, Aug. 2007.

[18] J. T. Kuo and E. Shih, “Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microw. Theory
Tech., vol. 51, no. 5, pp. 1554–1559, May 2003.

[19] C. W. Tang and M. G. Chen, “Wide stopband parallel-coupled stacked SIRs
bandpass filters with open-stub lines,” IEEE Microw. Wireless Compon. Lett., vol.
16, no. 12, pp. 666–668, Dec. 2006.

[20] C. W. Tang and Y. K. Hsu, “Design of a wide stopband microstrip bandpass filter with asymmetric resonators,” IEEE Microw. Wireless Compon. Lett., vol. 18, no.2, pp. 91–93, Feb. 2008.

[21] C. W. Tang and Y. K. Hsu, “A microstrip bandpass filter with ultra-wide
stopband,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 6, pp. 1468–1472, Jun.
2008.

[22] C. H. Wang, Y. S. Lin, C. H. Wu, and C. H. Chen, “Novel microstrip
coupled-line bandpass filters with shortened coupled sections for stopband
extension,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 540–546, Feb.
2006.

[23] C. W. Tang and W. T. Liu, “Design of a wide stopband microstrip bandpass filter with interdigital resonators,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 767–769, Dec. 2008.

[24] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A
miniaturized monolithic dual band filter using ceramic lamination technique for
dual mode portable telephones,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun.
1997, vol. 2, pp. 789–792.

[25] M. H. Weng, R. Y. Yang, Y. C. Chang, H. W. Wu, and K. Shu, “Design of a
multilayered dual-band bandpass filter with transmission zeros,” Microw. Opt.
Technol. Lett., vol. 50, no. 8, pp. 2010–2013, Aug. 2008.

[26] M. H. Weng, H. W. Wu, Kevin Shu, J. R. Chen, R. Y. Yang, and .Y. K. Su, “A
novel triple-band bandpass filter using multlayer-based Substrates for WiMAX,”
in Proc. 37th Eur. Microw. Conf., Sep. 2007, pp. 325–328.

[27] M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and
fundamental characteristics of microwave stepped-impedance Resonators,” IEEE
Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1078–1085, Jul. 1997.

[28] M. Sagawa, M. Makimoto, and S. Yamashita, “A design method of bandpass
filters using dielectric-filled coaxial resonators,” IEEE Trans. Microw. Theory
Tech., vol. MTT-33, no. 2, pp. 152–157, Feb. 1985.

[29] J. T. Kuo and H. S. Cheng, “Design of quasi-elliptic function filters with a
dual-passband response,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 10,
pp. 472–474, Oct. 2004.

[30] J. T. Kuo, T. H. Yeh, and C. C. Yeh, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1331–1337, Apr. 2005.

[31] C. L. Hsu, J. T. Kuo, and F. C. Hsu, “Design of loop resonator filters with a dual-passband response,” in Proc. Asia-Pacific Microw. Conf., Dec. 2005, vol. 3, pp. 4–7.

[32] C. Y. Chen, C. Y. Hsu, and H. R. Chuang, “Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 669–671, Dec. 2006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top