跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉家宏
研究生(外文):Chia-Hung Liu
論文名稱:輸電系統線路之故障源位置追蹤定位研究
論文名稱(外文):On Tracking The Line Fault Source Location In A Transmission System
指導教授:張文恭
指導教授(外文):Gary W. Chang
口試委員:李宗璘陳正一吳元康張文恭
口試委員(外文):Tsung-Lin LiCheng-I ChenYuan-Kang WuGary W. Chang
口試日期:2012-07-30
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:71
中文關鍵詞:電力品質故障定位電壓驟降輸電系統
外文關鍵詞:power qualityfault locationvoltage sagtransmission system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:3
傳統的電力系統結合資訊科技之網路與通訊等功能後,逐漸演變為所謂的智慧電網。智慧電網下的電力品質要求日趨嚴格,典型的電力品質問題包含因事故所引起持續幾週波至幾秒的短時間電壓驟降(voltage sag)或電容器切換引起的暫態。台灣地區之輸電系統是以架空線路為主,因此容易受到自然環境及人為的影響而發生故障的情形,造成供電電壓產生變動或中斷的情形。對於電力公司及用戶要如何去得知暫態來源的位置並進而去採取對應措施,其位置的判別將是一個刻不容緩的課題。
本論文將針對故障源位置辨識方法(僅針對輸電線路故障造成的電壓驟降),整理相關文獻並作一個綜合評估,於最佳電力品質監測裝置位置下,實現快速且有效的故障定位演算法。最後,利用EMTP/ATP與Matlab軟體來進行範例系統模擬與分析,最後並配合某一區域實際345kV輸電系統之故障事件來驗證演算法之有效性及準確性。

The traditional electric power system combines information technology, network, and communications functions and then gradually evolves into the so-called smart grid. Smart grid power quality requirements are becoming more important. The typical power quality problems caused by accident or switching transient sustain a few circles of the wave to a few seconds short time voltage sag. Transmission system delivery in Taiwan is mainly based on overhead lines which are vulnerable to natural environment and human impact. The failure can cause the supply voltage change or interruption. For the utility and users to locate transient location and then taking corresponding measures becomes an urgent issue to identify the fault location.
This thesis studies the literatures relevant to the fault source location tracking methods (only for the transmission line failure caused by voltage sag) and performs a comprehensive assessment. An optimal placement of power quality monitoring devices is adopted to achieve fast and efficient fault location algorithm. EMTP / ATP and Matlab software are used to simulate and analyze the example transmission system. Finally, field data of the actual 345kV Taipower’s transmission system are used to verify the effectiveness and accuracy of the proposed algorithm.

ACKNOWLEDGMENTS I
中文摘要 II
ABSTRACT III
TABLE OF CONTENTS IV
LIST OF FIGURES VII
LIST OF TABLES IX

I. INTRODUCTION 1
1.1 Motivations 1
1.2 Research Goals 1
1.3 Contributions 2
1.4 Thesis Organizations 2
II. POWER QUALITY DISTURBANCES 4
2.1 Overview of Power Quality Disturbances 4
2.2 Sags (dips), Swells, and Interruptions 4
2.3 Classification of Phenomena 6
III. LITERATURE SURVEY 9
3.1 Introduction 9
3.2 Impedance-based Method 9
3.3 Phasor-based Method 10
3.3.1 Using real current component 10
3.3.2 Comparing the phase angles of pre-fault and during-fault currents 11
3.4 Traveling Wave 13
3.5 Matching During-fault Voltage Sags Data 14
3.6 Summary 14
IV. PLACEMENT OF POWER QUALITY METERS 16
4.1 Mathematical Model of Deciding Power Quality Meters Location 16
4.2 The Actual Transmission System 19
V. FAULT LOCATING ALGORITHM OF TRANSMISSION SYSTEM 21
5.1 Selecting Characteristics 21
5.2 Building Bus Impedance Matrix for Solving Unbalanced Faults 23
5.3 Solving Unbalanced Faults 23
5.3.1 Single line-to-ground fault 23
5.3.2 Line-to-line fault 25
5.3.3 Double line-to-ground fault 27
5.4 Estimation of the Fault Resistance 30
5.5 Identifying the Faulted Line 31
5.6 Fault Location of A Given Section 32
VI. CASE STUDIES 35
6.1 Simulation Environment 35
6.1.1 Simulation software 35
6.1.2 Transmission system under test 35
6.2 Simulation Results 37
6.2.1 Case 1-Simulation single line-to-ground fault of ATP 37
6.2.2 Case 2-Simulation line-to-line fault of ATP 40
6.2.3 Case 3-Simulation double line-to-ground fault of ATP 43
6.3 Field Results 45
6.3.1 Case 1-Actual single line-to-ground fault 45
6.3.2 Case 2-Actual single line-to-ground fault 47
6.4 Summary 52
VII. CONCLUSION AND FUTURE WORKS 53
7.1 Conclusion 53
7.2 Future Works 53

REFERENCES 55
VITA 58

[1] IEC Std., 61000-4-30, “Electromagnetic Compatibility (EMC). Part4: Testing and measurement techniques – power quality measurement methods,” 2003.
[2]M. Bollen, Understanding Power Quality Problems, IEEE Press,2000.
[3]IEEE Std., 1159, IEEE recommended practice for monitoring electric power quality, 2009, pp. c1- 81.
[4] IEEE Std., C37.114, IEEE Guide for Determining Fault Location on AC Transmission and Distribution Lines, 2004, pp. 1- 36.
[5] N. Hamzah, A. Mohamed, and A. Hussain, “A new approach to locate the voltage sag source using real current component,” Electric Power Systems Research 72
(2004), pp. 113- 123.
[6] C. D. Le, M. H. J. Bollen, and I. Y. H. Gu, “Analysis of Power Disturbances from Monitoring Multiple Levels and Locations in a Power System,” Proceeding of
the 14th International Conference on Harmonics and Quality of Power, 2010, pp. 1- 7.
[7]M. Korkah and A. Abur, “Fault Location in Meshed Power Networks Using Synchronized Measurements,” North American Power Symposium (NAPS), 2010, pp. 1- 6.
[8] Z. Galijasevic and A. Abur, “Fault area estimation via intelligent processing of fault-induced transients,” IEEE Trans. on Power Systems, vol. 18, no. 4,
Nov. 2003, pp. 1241- 1247.
[9] A. Elhaffar and M. Lehtonen, ” An improved GPS current traveling-wave fault locator in EHV transmission networks using few recordings,” Future Power
Systems, 2005 International Conference on , 18 Nov. 2005 pp. 1- 5.
[10] Z. Galijasevic and A. Abur, “Fault Location Using Voltage Measurements,”
IEEE Trans. on Power Delivery, vol. 17, no. 2, Apr. 2002, pp. 441- 445.
[11]R. A. F. Pereira, L. G. W. da Silva, M. Kezunovic, and J. R. S. Mantovani, ”Improved Fault Location on Distribution Feeders Based on Matching During-Fault
Voltage Sags,” IEEE Trans. on Power Delivery, vol. 24, no. 2, Apr. 2009, pp. 852- 862.
[12]S. Lotfifard, M. Kezunovic, and M. J. Mousavi, “Voltage Sag Data Utilization for Distribution Fault Location,” IEEE Trans. on Power Delivery, vol. 26, no.
2, Apr. 2011, pp. 1239- 1246.
[13]S. M. Brahma, “Fault Location in Power Distribution System With Penetration of Distributed Generation,” IEEE Trans. on Power Delivery, vol. 26, no. 3, Jul.
2011, pp. 1545- 1553.
[14]趙汝鵬,“電力系統發生電壓驟降及並聯電容器切換暫態源位置之追蹤與辨識”,國立中正大學電機工程研究所碩士論文,民國九十五年。
[15]G. W. Chang, J. P. Chao, H. M. Huang, C. I. Chen, and S. Y. Chu, “On Tracking the Source Location of Voltage Sags and Utility Shunt Capacitor Switching
Transients,” IEEE Trans. on Power Delivery, vol. 23, no. 4, Oct. 2008 pp. 2124- 2131.
[16]李宏任,“實用保護電驛”,全華圖書股份有限公司,2003年10月。
[17]T. C. de Oliveira, F. J. M. de Carvalho, R. C. Leborgne, G. T. Watanabe, J. P. G. de Abreu, and J. F. de Oliveira, “Analysis of the relation between
voltage sags severity and fault characteristics,” Proceedings of the 14th Iinternational Conference on Harmonics and Quality of Power, 26-29 Sept. 2010,
pp. 1- 8.
[18]H. Saadat, Power System Analysis, Mc-Graw-Hill, 2002.
[19]J. Grainger and W. Stevenson, Jr, Power System Analysis. New York: McGraw-Hill, 2010.
[20]M. A. Ali, M. Fozdar, K. R. Niazi, and A. R. Phadke, “A Comparison of Stochastic Assessment Methods for Balanced and Unbalanced Voltage Sags,” Proceedings
of the 2011 Power and Energy Society General Meeting, 24-29 Jul. 2011, pp. 1- 6.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top