(3.236.214.19) 您好!臺灣時間:2021/05/06 22:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳昇霖
研究生(外文):Sheng Lin Wu
論文名稱:軸承勁度對 多齒對嚙合系統非線性動態行為之影響
論文名稱(外文):The Effects of Bearing Stiffness on Nonlinear Dynamic Behaviors of Multi-Mesh Gear Train
指導教授:蕭庭郎
指導教授(外文):Shiau,Ting-Nung
口試委員:錢志回楊條和劉德騏
口試委員(外文):Chien,Chi-HuiYoung,Tyau-HerLiu,De-She
口試日期:100/08/23
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:73
中文關鍵詞:齒輪軸承嚙合剛性混沌
外文關鍵詞:gearsbearingsmeshing stiffnessChaos
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討軸承勁度對多齒對系統動態特性的影響,首先利用具轉位係數之齒條刀具創成漸開線齒輪,再由齒型輪廓計算接觸線上之時變嚙合剛性,最後將時變嚙合剛性代入系統的運動方程式並使用朗吉-庫塔法(Runge-Kutta Method)求解,討論不同軸承勁度對多齒對嚙合系統的非線性動態行為。
結果顯示,系統在低速運轉至高速、且在每個轉速運轉一陣子時,若軸承勁度為10^10、10^12N/mm 時,則軸承勁度降低會讓系統的混沌提前產生。在高速運轉的情況下,軸承勁度降低會讓正轉係數位混沌的發生比負轉位係數快,此外,軸承勁度降低讓系統的混沌範圍增大。徑向位移方面,軸承勁度的增加會讓齒輪徑向位移量降低,並對系統動態傳輸誤差影響降低。另一方面,本研究中軸承阻尼為0.03、0.06、0.12時,對系統混沌的影響並不大。

This study discusses bearing stiffness effect on the multi-tooth system.First,the gear profile with modification coefficient by using rack cutter is proposed and the mesh stiffness at the position along the line of action is calculated.Final,the time-varying mesh stiffness into the system of equations of motion and use the Runge-Kutta method in the system, discuss different bearing stiffness on nonlinear dynamic behavior of gear system.
The results show, from low speed to high speed of the system , if the bearing stiffness is 10^10 and 10^12N/mm , that bearing stiffness reduction will make chaos ahead of the system. In the case of high speed, positive modification coefficient chaos to occur is faster than negative modification coefficient when bearing stiffness lower, Moreover,bearing stiffness Increase the scope of the system of Chaos whan bearing stiffness lower. In terms of radial displacement, due to the strong stiffness of bearing, radial displacement effect on dynamic transmission error will low. On the other hand,Bearing damping did not affect of chaos of system.

摘要.........I
目錄.........III
表目錄.........V
圖表.........VI
參數定義.........XII
希臘符號.........XV
上標.........XVI
下標.........XVI
第一章 緒論.........1
1.1研究動機.........1
1.2 文獻回顧.........2
1.3齒輪系傳動統模型.........2
1.4嚙合剛性模型.........4
1.5概述.........4
第二章 建立多齒對嚙合系統模型.........6
2-1 模型參數設定.........6
2-2 運動方程式與無因次化.........7
第三章 具轉位係數之時變嚙合剛性.........12
3-1 齒輪創成.........12
3-1-1 具轉位係數之齒條刀具.........12
3-1-2 齒條創成之轉換公式.........15
3-1-3 齒條與齒輪間之轉換.........16
3-1-4 齒廓方程式.........17
3-1-5 作用線上的方程式.........19
3-2嚙合剛性.........21
3-2-1 單齒牙嚙合剛性.........21
3-2-2 全部的嚙合剛性.........26
第四章 數值結果與討論.........28
4.1 數值結果驗證.........28
4-2. 不同軸承勁度於多齒對嚙合系統之動態分析.........37
第五章 結論與未來研究.........68
5.1 結果討論.........68
5.2 未來研究.........69
參考文獻.........70

[1]H.N. Ozguven and D.R. Houser, 1988, ”Mathematical models used in gear dynamics- a revew”, Journal of Sound and Vibration, Vol.121,No.3,pp.384-414.
[2]A. Kahraman and R. Singh,1990 “Non-linear dynamics of a spur gear pair”, Journal of Sound and Vibration,Vol. 142, No. 1, 8 October, pp. 49-75
[3]H. N. Ozguven, 1991 , “A non-linear mathematical model for dynamic analysis for spur gear including shaft and bearing dynamic ”, Journal of Sound and Vibration, Vol .145, NO.2,pp. 239-260 .
[4]A. Kahraman and R. Singh, 1991,“Non-linear dynamics of a geared rotor –bearing system with multiple clearnces”, Journal of Sound and Vibration , Vol. 144,No.3, pp. 469-506 .
[5]A. Kahraman , H. NevzatOzguven, D. R. Houser, J. J. Zakrajsek,1992,“Dynamic Analysis of Geared Rotors by Finite Elements”, Journal of Mechanical Design,Vol.114,pp.507
[6]C.H. Liou, H.H. Lin, F.B. Oswald, and D.P. Townsend, 1996, ”Effect of contact ratio on spur gear dynamic load with no tooth profile modifications”, Journal of Mechanical Design, Vol. 118, pp.439-443.
[7]A. Raghothama , S. Narayanan, 1999,Bifurcation And Chaos In Geared Rotor Bearing System By Incremental Harmonic Balance Method,Journal of Sound and Vibration,Vol. 226, NO. 3, pp. 469-492
[8]L. Walha, T. Fakhfakh and M. Haddar, 2009,“Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash”, Mechanism and Machine Theory,Vol. 44,No. 5,pp. 1058-1069 .
[9]O. Lundvall1, N. Str .omberg , 2004, A. Klarbring ,“A flexible multi-body approach for frictional contact in spur gears”, Journal of Sound and Vibration,Vol. 278,No. 3,pp. 479-499 .
[10]S. He, R. Gunda, R. Singh, 2007,“Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness”, Journal of Sound and Vibration,Vol.301,No. 3-5, pp. 927-949 .
[11]A. Al-Shhyab, A. Kahraman , 2007,“A Nonlinear Torsional Dynamic Model of Multi-Mesh Gear Trains Having Flexible Shafts”, Jordan Journal of Mechanical and Industrial Engineering , Vol. 1, No.1995-6665,pp.31-41
[12]C. Siyu, T. Jinyuan , L. Caiwang, W. Qibo, 2011,Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction, Mechanism and Machine Theory, Vol. 46,No.4,pp.466-478 .
[13]S. Theodossiades and S. Natsiavas , 2001,“Periodic and chaotic dynamic of motor-driven gear-pair systems with backlash”, Chaos, Solitons & Fractals, Vol.12, NO. 13, pp.2427-2440
[14]R.W. Cornell, 1981, ”Compliance and stress sensitivity of spur gear teeth”, Journal of Mechanical Design,Vol. 103,pp. 447-459.
[15]H-H. Lin, R. L. Huston,and J. J. Coy, 1988, ”On dynamic loads in parallel shaft transmissions: part I-modelling and analysis”, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp. 221-225.
[16]H-H. Lin, R. L. Huston, and J. J. Coy, 1988, ”On dynamic loads in parallel shaft transmissions: part II-parameter study”, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp. 226-229.
[17]H.N. Ozguven, 1991, ”A non-linear mathematical model for dynamic analysis of spur gears including shaft and bearing dynamics”, Journal of Sound and Vibration, Vol. 145, No. 2, pp. 239-260.
[18]A. Kahraman and R. Singh,1991,“Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system”, Journal of Sound and Vibration,Vol. 146, No. 1, , pp. 135-156
[19]J. Lin and R. G. Parker, 2002 ,“Mesh Stiffness Variation Instabilities in Two-Stage Gear Systems”, J. Vib. Acoust,Vol. 124 ,No. 1 pp.68-77.
[20]鄭丞傑, 2009, “齒條刀具創成時變剛性於多齒對嚙合系統之分歧及混沌行為研究”, 國立中正大學機械工程學系碩士論文.
[21]鄭兆傑, 2010, “具包含轉位係數的時變嚙合剛性多齒對嚙合系統之非線性動態分析”, 國立中正大學機械工程學系碩士論文.
[22]李潤方、王建軍,1997,齒輪動力學-振動、衝擊、噪音

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔