跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳秋錦
研究生(外文):Wu, Chiuchin
論文名稱:具構造限制條件機構類型合成之樣式多項式研究
論文名稱(外文):An Inventory Polynomial for Type Synthesizing Mechanisms Subject to Structural Constraints
指導教授:黃以文黃以文引用關係
指導教授(外文):Huang, Yiiwen
口試委員:馮展華謝龍昌陳福成康耀鴻
口試委員(外文):Fong, ZhanghuaHsieh, LungchangChen, FuchenKang, Yawhong
口試日期:2012-07-13
學位類別:博士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:81
中文關鍵詞:specialized mechanismpermutation groupnon-adjacency constraint
外文關鍵詞:特殊化機構排列群非鄰接限制
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主要目的乃在於探討具特殊構造限制機構的類型合成之樣式多項式。首先訂定基本的機構構造限制,例如機件的鄰接限制或種類限制等。其次是根據機構的排列群及組合理論,對每一種機構構造限制,發展各式單一排列的樣式多項式,進而導出完整排列群的樣式多項式,並運用於機構的連桿排列群和接頭排列群。本研究將定義一個新的多項式,命名為Kinematic King Polynomial,簡稱為KK多項式。利用KK多項式來推演出具有不相鄰接構造限制的機構特殊化合成結果,突破Polya’s理論僅能對無構造限制的機構計算合成結果。本研究之完成將有助於了解具構造限制機構類型合成的組合數學涵義,以利日後發展具構造限制的生成函數。對於機構類型合成的理論將更臻完備,並進而促成機構類型合成的自動化。
This research investigates the use of inventory polynomials to type synthesize mechanisms that are subject to nonadjacent constraints. After classifying the mechanisms’ basic structural constraints into basic forms, we develop an inventory polynomial and single permutation for each constraint and then derive an inventory polynomial operator for the total permutation group. We then demonstrate the effectiveness of the proposed method using several examples. The new inventory polynomial named the kinematic king (KK) polynomial will assist in the development of a generating function for type synthesizing mechanisms that are subject to certain structural constraints.
摘 要 I
Abstract II
Acknowledgements III
Table of Contents IV
List of Figures VI
List of Tables VII
Chapter 1 Introduction 1
1.1 Motivation and Objective 1
1.2 Literature Review 2
1.3 Overview of the Dissertation 4
Chapter 2 Terminology 6
2.1 Link and joint adjacency matrix 6
2.2 Labeled link and joint adjacency matrix 7
2.3 Permutation Groups 8
2.4 Link groups and joint groups 8
2.5 Similar classes 9
2.6 Cycle index 9
2.7 Polya’s theory 10
2.8 Generating function 11
Chapter 3 Kinematic King polynomial 13
3.1 King Polynomial 13
3.2 Kinematic King Polynomial 17
Chapter 4 Procedure and Examples 24
4.1 Graphic method for KKP 24
4.1.1 Expressions 24
4.1.2 Procedure 27
4.2 Matrices method for KKP 47
4.2.1 Kinematic Matrices 47
4.2.2 Procedure 50
Chapter 5 Conclusions and Suggestions 69
References 71



[1]Johnson, R. C., and Towfigh, K., 1967, "Creative Design of Epicyclic Gear Trains Using Number Synthesis," ASME J. Eng. Ind., 89, pp. 309-314.
[2]Freudenstein, F., 1971, "An Application of Boolean Algebra to the Motion of Epicyclic Drives," ASME J. Eng. Ind., 93, pp. 176-182.
[3]Erdman, A. G., and Bowen, J., 1981, "Type and Dimensional Synthesis of Casement Window Mechanisms," Mech. Eng., 103, pp. 46-55.
[4]Chen, J. J., 1982, "Type Synthesis of Plane Linkage," Master’s thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
[5]Yan, H. S., and Hsu, C. H., 1983, "A Method for the Type Synthesis of New Mechanisms," J. Chin. Soc. Mech. Eng., 4, pp. 11-23.
[6]Freudenstein, F., and Maki, E. R., 1984, "Kinematic Structure of Mechanisms for Fixed and Variable-Stroke Axial-Piston Reciprocating Machines, " ASME J. Mech. Trans. Automat. Des., 106(3), pp. 355-364.
[7]Yan, H. S., and Chen, J. J., 1985, "Creative Design of a Wheel Damping Mechanism," Mech. Mach. Theory, 20(6), pp. 597-600.
[8]Tsai, L. W., 1987, "An Application of the Linkage Characteristic Polynomial to the Topological Synthesis of Epicyclic Gear Trains," ASME J. Mech. Trans. Automat. Des., 109, pp. 329-336.
[9]Hsu, C. H., and Lin, J. D. 1989, "The Structural Synthesis of the Gripper Mechanisms of Industrial Robots, " Third International Conference on Automation Technology, National Cheng Kung University, Tainan, Taiwan, pp. 91-96.
[10]Yan, H. S., and Hwang, Y. W., 1991, "The Specialization of Mechanisms," J. Mech. Mach. Theory, 26(6), pp. 541-551.
[11]Uicker, J. J., and Raicu, A., 1975, "A Method for the Identification and Recognition of Equivalence of Kinematic Chains," Mech. Mach. Theory, 10, pp. 375-383.
[12]Mruthyunjaya, T. S., and Balasubramanian, H. R., 1987, "In Quest of a Reliable and Efficient Computational Test for Detection of Isomorphism in Kinematic Chains," Mech. Mach. Theory, 22(2), pp. 131-139.
[13]Yan, H. S., and Hwang, W. M., 1984, "Linkage Path Code," Mech. Mach. Theory, 19(4), pp. 425-429.
[14]Ambekar, A. G., and Agrawal, V. P., 1986, "On Canonical Numbering of Kinematic Chains and Isomorphism Problem: Max Code," ASME Paper No. 86-DET-169.
[15]Ambekar, A. G., and Agrawal, V. P., 1987, "Canonical Numbering of Kinematic Chains and Isomorphism Problem: Min Code," Mech. Mach. Theory, 22(5), pp. 453-461.
[16]Tang, S., and Liu, T., 1988, "The Degree Code—A New Mechanism Identifier," ASME Trends Dev. Mech. Mach. Robot., 1, pp. 147-151.
[17]Yan, H. S., and Hwang, Y. W., 1990, "Number Synthesis of Kinematic Chains Based on Permutation Groups," J. Math. Comput. Model., 13(8), pp. 29-42.
[18]Hwang. Y. H., and Lin, Y. B., 1993, "Number Synthesis of Generalized Chains with Multiple Joints Based on Permutation Groups," Proc. 10th National Conference of the Chinese Society of Mechanical Engineers, Hsinchu, Taiwan, pp. 269-276.
[19]Hwang, Y. H., and Tzeng, G. C., 1998, "The Generating Function for the Type Synthesis of Mechanisms with Eight or Less Links," Proc. 1st National Conference on the Design of Mechanisms and Machines, Tainan, Taiwan, pp. 45-51.
[20]Hwang, Y. H., and Tzeng, G. C., 1999, "On the Permutation Groups and Generating Functions of Basic Kinematic Chains with Ten or Less Links," Proc. 16th National Conference of the Chinese Society of Mechanical Engineers, Hsinchu, Taiwan, pp. 466-473.
[21]Pucheta, M. A., and Cardona, A., 2005, "Type Synthesis of Planar Linkage Mechanisms with Rotoidal and Prismatic Joints," 8th Argentine Congress on Computational Mechanics, San Miguel de Tucumán, Argentina, pp. 2703–2730.
[22]Yan, H. S., and Hung, C. C., 2006, "Identifying and Counting the Number of Mechanisms from Kinematic Chains Subject to Design Constraints," ASME J. Mech. Des., 128, pp. 1177-1182.
[23]Yan, H. S., and Hung, C. C., 2007, "An Improved Approach for Counting the Number of Mechanisms from Kinematic Chains Subject to Design Constraints," J. Chin. Soc. Mech. Eng., 28(5), pp. 471-479.
[24]Yan, H. S., and Hung, C. C., 2007, "A Systematic Procedure to Count the Number of Mechanisms with Design Constraints," Proc. 12th IFToMM World Congress, Besançon, France, June 18-21.
[25]Hung, C. C., Yan, H. S. and G. R. Pennock, 2008, "A Procedure to Count the Number of Planar Mechanisms Subject to Design Constraints from Kinematic Chains," Mech. Mach. Theory, 43(6), pp. 676-694.
[26]Liu, C. T., 1968, Introduction to Combinatorial Mathematics, McGraw-Hill, New York.
[27]Harary, F., 1972, Graph Theory, Addison-Wesley Publishing Company, Reading, MA.
[28]Freudenstein, F., 1967, "The Basic Concepts of Polya's Theory of Enumeration, with Application to the Structural Classification of Mechanisms," J. Mech., 3, pp. 275-290.
[29]Motoyama, A. and Hosoya, H., 1977, “King and domino polynomials for polyomino graphs,” J. Math. Phys., 18, pp. 1485-1490.
[30]Balasubramanian, K. and Ramaraj, R., 1985, “Computer generation of king and color polynomials of graphs and lattices and their applications to statistical mechanics,” J. of Computional Chemistry, Vol. 6, No. 5, pp. 447-454.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文