跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威甫
研究生(外文):Chen, Weifu
論文名稱:具同步聚焦及過濾生物細胞功能之絕緣式介電泳晶片系統研製
指導教授:任春平
指導教授(外文):Jen, Chunping
口試委員:任春平江佩如楊奕玲呂國棟
口試委員(外文):Jen, ChunpingChing, PeijuYang, YilingLu, Kwoktung
口試日期:2012-07-24
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:77
中文關鍵詞:細胞過濾細胞聚焦介電泳絕緣結構
外文關鍵詞:Cells filtrationCells focusingDielectrophoresisInsulating structure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究設計並製造出一能有效達到同時過濾及聚焦生物細胞之絕緣式介電泳晶片,於流道內部設計製作10組漸縮式X形絕緣結構,以壓縮流道內由兩側所施加之電力線來產生不均勻電場強度區域,進而將受正介電泳力作用之細胞捕捉至結構間高電場強度區域並同時將受負介電泳力作用之細胞聚焦至流道中央低電場強度區域。於本研究中,利用死、活子宮頸癌細胞 (HeLa cell)來驗證本次設計可行性,由數值模擬與實驗結果指出,增加所施加之電壓及降低樣品流率能分別增強介電泳力及延長介電泳作用時間,皆能提升過濾效率,當施加電壓50 V且流率為0.5 microliter/min條件時,其效率最高可達88%,且在流道末端呈現所欲聚焦之細胞將排列於流道中央,並由實驗結果顯示,本研究所設計之晶片無需複雜流體控制即可達到同步過濾並聚焦欲檢測細胞之目的。於後續細胞量測實驗中,根據庫爾特原理,設計量測電極對及電路,並探討影響量測訊號之問題。
The main purpose of the present study is to design an insulator-based dielectrophoretic microdevice with simultaneous filtration and focusing of biological cells. The cells are introduced into the microchannel and pre-confined hydrodynamically by the funnel-shaped insulating structures close to the inlet. Ten sets of X-patterned insulating structures were designed in the microfluidic channel. The main function of the first five sets of the insulating structures is to guide the cells with negative dielectrophoretic responses (viable HeLa cells) into the center region of the microchannel. Furthermore, the positive dielectrophoretic cells (dead HeLa cells) are attracted to regions with a high electric-field gradient generated at the edges of the insulating structures. The rest sets of X-patterned structure were employed to ensure the focusing of the negative dielectrophoretic cells escaped from the upstream region. Experiments employing the mixture of dead and viable HeLa cells were conducted to demonstrate the capability of the present design. Results indicated that the performance of filtration and focusing increased with the strength of the applied electric field and with a decrease in inlet sample flow rate, which were in accordance with the trend predicted by numerical simulations. The efficiencies of filtration were also quantitatively investigated in this work. The filtration efficiency is up to 88% at the applied voltage of 50 volts and the sample flow rate of 0.5 microliter/min. In addition, Coulter detector had been used to measure the impedance of HeLa cells for cellular count.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 微流體晶片生物樣本聚焦 2
1-2-2 介電泳應用於生物粒子分離 13
1-2-3 電阻抗量測應用於細胞計數 22
1-3 研究目的 27
第二章 基本理論 29
2-1 介電泳理論 29
2-2 細胞Clausius-Mossotti 因子之探討 32
2-3 電場對細胞裂解之影響 35
2-4 庫爾特原理 35
第三章 研究方法 37
3-1 實驗設備及藥劑 37
3-2 晶片設計 39
3-3 晶片製作 43
3-3-1 介電泳晶片製作 43
3-3-2 阻抗量測晶片製作 48
3-4 細胞樣本製備 52
3-4-1 細胞培養 52
3-4-2 實驗用細胞樣本之製備 53
3-5 實驗設備架設 55
第四章 結果與討論 56
4-1 流道內流場及電場平方之穩態模擬結果 56
4-2 細胞於微流道中流動軌跡之暫態模擬結果 58
4-3 死、活HeLa細胞同步過濾及聚焦實驗 61
4-4 細胞量測實驗 64
第六章 未來建議 74
參考文獻 75

[1]G. Hairer, G. S. Pärr, P. Svasek, A. Jachimowicz, and M. J. Vellekoop, “Investigations of micrometer sample stream profiles in a three-dimensional hydrodynamic focusing device,” Sensors and Actuators B, 132, 518-524, 2008.
[2]C. H. Tsai, H. H. Hou and L. M. Fu, “An optimal three-dimensional focusing technique for micro-flow cytometers,” Microfluidics and Nanofluidics, 5, 827-836, 2008.
[3]Y. Gambin, C. Simonnet, V. VanDelinder, A. Deniz , and A. Groisman, “Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics,” Lab on a Chip, 10, 598-609, 2010.
[4]X. Mao, S. S. Lin, C. Dong and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab on a Chip, 9, 1583-1589, 2009.
[5]H. A. Pohl, “Some Effects of Nonuniform Fields on Dielectrics,” Journal of Applied Physics, 29, 1182-1188, 1958.
[6]I. F. Cheng, C. C. Chung and H. C. Chang, “High-throughput electrokinetic bioparticle focusing based on a travelling-wave dielectrophoretic field,” Microfluidics and Nanofluidics, 10, 649-660, 2011.
[7]D. Holmes, H. Morgan and N. G. Green, “High throughput particle analysis: Combining dielectrophoretic particle focussing with confocal optical detection,” Biosensors and Bioelectronics, 21, 1621-1630, 2006.
[8]J. Zhu and X. Xuan, “Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields,” Electrophoresis, 30, 2668-2675, 2009.
[9]C. Church, J. Zhu, G. Wang, T. R. J. Tzeng , and X. Xuan, “Electrokinetic focusing and filtration of cells in a serpentine microchannel,” Biomicrofluidics, 3, 044109, 2009.
[10]C. P. Jen, C. T. Huang, and H. Y. Shih, “Hydrodynamic separation of cells utilizing insulator-based dielectrophoresis,” Microsystem Technologies, 16, 1097-1104, 2010.
[11]C. P. Jen, C. T. Huang, and C. H. Weng, “Focusing of biological cells utilizing negative dielectrophoretic force generated by insulating structures,” Microelectronic Engineering, 87, 773-777, 2010.
[12]H. Li and R. Bashir, “Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes,” Sensors and Actuators B, 86, 215-221, 2002.
[13]S. Choi and J. K. Park, “Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array,” Lab on a Chip, 5, 1161-1167, 2005.
[14]I. Doh and Y. H. Cho, “A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process,” Sensors and Actuators A, 121, 59-65, 2005.
[15]C. Iliescu, G. Tresset and G. Xu, “Dielectrophoretic field-flow method for separating particle populations in a chip with asymmetric electrodes,” Biomicrofluidics, 3, 044104, 2009.
[16]M. D. Pysher and M. A. Hayes, “Electrophoretic and Dielectrophoretic Field Gradient Technique for Separating Bioparticles,” Analytical Chemistry, 79, 4552-4557, 2007.
[17]T. Braschler, N. Demierre, E. Nascimento, T. Silva, A. G. Oliva and P. Renaud, “Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies,” Lab on a Chip, 8, 280-286, 2008.
[18]Y. Kang, B. Cetin, Z. Wu and D. Li, “Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle,” Electrochimica Acta, 54, 1715-1720, 2009.
[19]R. C. Gallo-Villanueva, N. M. Jesús-Pérez, J. I. Martínez-López and A. Pacheco, “Assessment of microalgae viability employing insulator-based dielectrophoresis,” Microfluidics and Nanofluidics, 10, 1305-1315, 2011.
[20]D. W. Lee, S. Yi and Y. H. Cho, “A Flow rate Independent Cell Concentration Measurement Chip Using Electrical Cell Counters Across a Fixed Control Volume,” Journal of Microelectromechanical Systems, 17, 139-146, 2008.
[21]N. Watkins, B. M. Venkatesan, M. Toner, W. Rodriguez and R. Bashir, “A robust electrical microcytometer with 3-dimensional hydrofocusing,” Lab on a Chip, 9, 3177-3184, 2009.
[22]R. Rodriguez-Trujillo, O. Castillo-Fernandez, M. Garrido, M. Arundel, A. Valencia and G. Gomila, “High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture,” Biosensors and Bioelectronics, 24, 290-296, 2008.
[23]C. Bernabini, D. Holmes and H. Morgan, “Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria,” Lab on a Chip, 11, 407-412, 2011.
[24]H. A. Pohl, “Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields,” Cambridge University Press., 1978.
[25]T. B. Jones, “Electromechanics of particles,” Cambridge University Press, New York, 1995.
[26]C. P. Jen and T. W. Chen, “Trapping of cells by insulator-based dielectrophoresis using open-top microstructures,” Microsystem Technologies, 15, 1141-1148, 2009.
[27]K. Y. Lu, A. M. Wo, Y. J. Lo, K. C. Chen, C. M. Lin and C. R. Yang, “Three dimensional electrode array for cell lysis via electroporation,” Biosensors Bioelectronics, 22, 568-574, 2006.
[28]R. B. Brown and J. Audet, “Current techniques for single-cell lysis,” Journal of the Royal Society Interface, 5, 131-138, 2008.
[29]F. Han, Y. Wang, C. E. Sims, M. Bachman, R. Chang, G. P. Li and N.L. Allbrittion, “Fast electrical lysis of cells for capillary electrophresis,” Analytical Chemistry, 75, 3688-3696, 2003.
[30]G. Mernier, N. Piacentini, T. Braschler, N. Demierre and P. Renaud, “Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting,” Lab on a Chip, 10, 2077-2082, 2010.
[31]W. H. Coulter, “High speed automatic blood cell counter and cell size analyzer,” Proc. Natl. El. Conf., 12, 1034-1040, 1956.
[32]M. D. Graham, “The Coulter Principle: Foundation of an Industry,” Journal of Laboratory Automation, 8, 72-81, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top