跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/30 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪晨維
研究生(外文):Chen-Wei, Hung
論文名稱:應用有限元素法於覆晶軟板式FCOF之 參數化設計與數值分析
論文名稱(外文):A Numerical Analysis Of Bonding Parameters Enactment On Flip Chip-On-Film Structure Using Finite Element Method
指導教授:劉德騏
指導教授(外文):De-Shin, Liu
口試委員:陳精一徐祥禎敖仲寧劉德騏
口試委員(外文):Ching-I, ChenHsiang-Chen, HsuJong-Ning, AohDe-Shin, Liu
口試日期:2012-07-12
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:87
中文關鍵詞:有限元素法覆晶軟板電子封裝
外文關鍵詞:Finite element methodFlip chip on filmElectronic package
相關次數:
  • 被引用被引用:0
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
覆晶軟板(Flip Chip-on-Film, FCOF)技術中之內引腳壓合(Inner Lead Bonding, ILB)製程中包含熱壓溫度、熱壓時間、凸塊尺寸、引腳尺寸、引腳鍍錫量、以及壓合力量等製程參數,其接合情況將直接影響產品的良率與可靠度。一般來說,較差的良率以及可靠度大部分導因於製程引發的熱變形以及應力/應變行為所造成的,而這些行為通常會導致不同的破壞模式。
本研究主要目的在於建立一個最佳化製程參數設計,文中將考慮內引腳接合後整體結構強度分析以及接合過程溫度傳遞現象,以有限元素法建立模型,完成深入分析與模型驗證。
在實驗方面完成壓合力量與下沉量、尺寸變動與結構變形、引腳接合時的熱傳溫度,上述各項實驗數據可用於驗證有限元素模型的正確性。在數值分析方面首先完成單引腳模型,可用以討論引腳斷裂位置的影響,以及探討壓合力量、下沉量、凸塊尺寸三變異數間的最佳化製程。之後探討內引腳接合過程的溫度傳遞現象。凸塊材料從金凸塊改成複合金凸塊(Composite Bump),更動製程參數,以探討壓合參數變化其影響。本文之研究成果將有助於FCOF-ILB 製程產品的開發,並且提供相關的內引腳設計參考。
(關鍵詞:覆晶軟板FCOF,內引腳接合ILB,有限元素法FEM,複合金凸塊Composite Bump)
Flip Chip-On-Film (FCOF) is a very important technique about electronic packaging in the present eneration. It is fundamentally dependent upon the quality of the inner lead bonding (ILB)parameters, such as bump size, lead size, Tin on lead, bonding force and bonding duration. Different bonding parameters influence yield and reliability immediately. General speaking, the failure mode was happened due to thermal stress and strain. The aim of this research is to establish an optimization methodology of parameters enactment. It contain the bonding strength of ILB interconnection, the eutectic
bonding temperature. Creating model of FCOF structure using finite element method(FEM) and then verify the model. Simulation of bonding behavior expect deformation using single lead model. Die,
gold bump, copper lead and polyimide film constitute FE model. There are some experiments in this study for checking the relation of parameters and deformation that including bonding force, sinking
value, bump dimension, composite bump and heat transformation. The foregoing experiments can be used to verify the correctness of the FE model. Investigating the phenomena of temperature distribution and
changing bonding parameters infer the influence of the two issues.
Conclusion of this study is contributive for the development of FCOF ILB products, providing design chart for reference about ILB and composite bump.
(Keywords: flip chip on film, eutectic bonding, parameters enactment,finite element method, inner lead bonding, composite bump)
目錄
中文摘要 ...........................................................................................I
英文摘要 ......................................................................................... II
目錄................................................................................................III
圖目錄 .......................................................................................... VII
表目錄 ............................................................................................ XI
第一章 緒論 .................................................................................... 1
1-1 前言............................................................................ 1
1-2 電子構裝簡介 ............................................................ 1
1-2-1 覆晶概論 ......................................................... 3
1-3 驅動積體電路簡介 ..................................................... 4
1-3-1 FCOF 概論 ...................................................... 5
1-4 文獻回顧 .................................................................... 7
1-4-1 結構分析部份 .................................................. 7
1-4-2 熱傳分析部份 .................................................. 9
1-4-3 文獻回顧總結 ................................................ 10
1-5 研究方法與流程....................................................... 11
IV
第二章 內引腳成型之溫度預測 .................................................... 19
2-1 內引腳成型的暫態溫度量測.................................... 19
2-2 熱傳有限元素模型之建立 ....................................... 21
第三章 內引腳成型之數值模擬 .................................................... 29
3-1 有限元素模型之建立 ............................................... 29
3-2 內引腳溫度效應的探討 ........................................... 30
3-3 內引腳有限元素模型驗證 ....................................... 32
3-3-1 初步驗證 ....................................................... 32
3-3-2 進階驗證 ....................................................... 33
第四章 壓合參數設計與影響........................................................ 41
4-1 參數定義與其影響 ................................................... 41
4-1-1 壓合力量(Bonding force) ............................... 41
4-1-2 幾何尺寸(Bump dimension) .......................... 42
4-1-3 凸塊下沉量(Sinking value) ............................ 42
4-1-4 灌膠間隙(Edge gap) ...................................... 43
4-2 參數設定與內引腳成形關係.................................... 43
第五章 複合金凸塊對結構的影響 ................................................ 47
V
5-1 複合金凸塊材料....................................................... 47
5-2 銅鎳金合金凸塊的成型 ........................................... 48
第六章 結果與討論 ....................................................................... 55
第七章 未來研究延伸方向 ........................................................... 57
7-1 幾何尺寸對整體結構影響 ....................................... 57
7-2 溫度量測實驗精準化 ............................................... 57
參考文獻 ........................................................................................ 61
參考文獻
[1]W. T. Triggs and C. J. Byrans. Jr., U. S. Pat. 3.599.060, Aug. 19, 1971.
[2]G.. S. Shen, “LCD Driver IC Assembly Technologies and Status,” in Int. Symp. Electronic Materials packaging, pp. 313-316, 2002.
[3]H. Duran, I. Venter, and P. Suter, “Die Optimization for COF Assembly,” 11th Annual International KGD Packaging and Test Workshop, CA, 2004, Napa, CA.
[4]C. I. Chen, C. Y. Ni, C. M. Chang, S. C Wu, and D. S. Liu, “Bondability Study of Chip-on-Film (COF) Inner Lead Bonding (ILB) Using Conventional Gang Bonder,” IEEE Trans. Electron. Packag. Manuf., vol. 31, no. 4, 2008.
[5]C. Jang, S. Han, H. Kim, and S. Kang, “A Numerical Failure Analysis on Lead Breakage Issue of Ultra Fine Pitch Flip Chip-on-Flex and Tape Carrier Packages During Chip/Film Assembly Process,” Microelectron. Rel., vol. 46, pp. 487-495, 2006.
[6]C. Jang, S. Han, J. Ryu, S. Cho, and H. Kim, “Issues in Assembly Process of Next-Generation Fine-Pitch Chip-on-Flex Packages for LCD Applications,” IEEE Trans. Adv. Packaging, vol. 1, no. 30, pp. 2-10, 2007.
[7]D. S. Liu, Y. C. Chao, C. H. Lin, G. S. Shen, and H. S. Liu, “Numerical Study on The Bonding Tool Position, Tip Profile and Planarity Angle Influence on TAB/ILB Interconnection Reliability,” Microelectron. Rel., vol. 43, pp. 935-943, 2003.
[8]Atsumi K, Kashima N, Maehara Y, Mitsuhashi T, Komatsu T, and Ochiai N, “Inner lead bonding techniques for 500-lead dies having a 90-mm lead pitch,” IEEE Trans Comp Hybrids Manufact Technol, vol. 13, no. 1, pp. 222-228, 1990.
[9]畑田賢造原著,卓聖鵬編譯,1993,「TAB技術入門」,全華科技圖書。
[10]Lau JH. Handbook of tape automated bonding. New York: Van Nostrand Reinhold; 1992.
[11]J. H. Lau, D. W. Rice, and C. G. Harkins, “Thermal Stress Analysis of Tape Automated Bonding Packages and Interconnection,” IEEE Trans. Compon., Hybrids, Manuf. Technol., vol. 13, no. 1, pp. 182-187, 1990.
[12]K. Oshige, K. Nakanishi, “Development of A Physical Simulation System of ILB Process,” Advance in Electronic Packaging ASME, vol. 1, pp.501-507, 1992.
[13]M. Pecht, X. Wu, “Characterization of Polyimides Used in High Density Interconnects,” IEEE Trans. Compon., Packag., Manuf. Technol. B, vol. 17, no. 4, 1994.
[14]C. Y. Ni, K. S. Yoon, H. J. Ahn, and C. I. Chen, “Recipe Optimization and Design Software Development of Tap Carrier Package(TCP)Inner Lead Bonding(ILB),” IEEE Trans. Electron. Packag. Manuf., vol. 28, no. 2, 2005.
[15]C. Y. Ni, C. I. Chen, K. S. Yoon, and H. J. Ahn, “An Accommodative Approach Designed for TCP Gold-to-Gold Inner Lead Bonding,” IEEE Trans Electron Pack Manufact, vol.29, no.2, pp. 91-98, 2006.
[16]C. T. Kuo, M. C. Yip, and K. N. Chiang, “Time and Temperature Dependent Mechanical Characterization of Polyimide Materials in Electronic Packaging Application,” Electronic Packaging Technology Conference, pp. 413-421, 2002.
[17]P. Suter, R. Bauknecht, T. Graf, H. Duran, and I. Venter, “Thermo-Mechanical Finite-Element Modeling of a Chip-on-Foil Bonding Process,” 6th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Elements and Micro-Systems, EuroSimE, 2005.
[18]S. M. Chang, J. H. Jou, A. Hsieh, T. H. Chen, C. Y. Chang, Y. H. Wang, and C. M. Huang, “Characteristic Study of Anisotropic-Conductive Film for Chip-on-Film Packaging,” Microelectron. Rel., vol. 41, pp. 2001-2009, 2001.
[19]C. H. Tung, Y. S. Kuo, S. M. Chang, ” Tape Automated Bonding Inner Lead Bonded Devices (TAB/ILB) Failure Analysis,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 16, no. 3, pp.304-310, 1993.
[20]Li MHC, Hong SM. “Optimal Parameter Design for Chip on Film Technology Using The Taguchi Method,” Int. J. Adv. Manuf. Technol., vol. 25, pp. 145-153, 2005.
[21]Kumano Y, Tomura Y, Itagaki M, and Bessho Y, “Development of Chip-on-Flex Using SBB Flip-Chip Technology,” Microelectron Reliability, vol. 41, pp. 525-530, 2001.
[22]Takahara H, Ishibashi S, Ishizawa S, Hirata H, Koshoubu N, and Tsunetsugu H, “Optoelectronic Chip on Film (OE-COF) Packaging Technology,” Electronics and communications in Japan, vol. 85, no. 2, pp. 59-66, 2002.
[23]H. Okamoto and T. B. Massalski, Eds., “Phase Diagram of Binary Gold Alloys,” Metals Park, OH: ASM International, pp. 278-289, 1987.
[24]C. C. Lee, C. Y. Wang, and G. S. Matijasevic, “A New Bonding Technology Using Gold and Tin Multilayer Composite Structures,” IEEE Trans Comp Hybrids Manufact Technol, vol. 14, no. 2, pp. 407-412, 1991.
[25]H. Jung, T. Lee, J. Baek, and H. Kim, “Optimization of TAB Inner Lead Bonding Process,” in Proc. 20th Ann. IEEE SEMI-THERM Semiconductor, 1996, pp. 129-135.
[26]MTS Tytron User Manual.
[27]趙永清,1999,「金線熱機械性質量測與熱音波銲線路徑模擬」,中正大學機械工程研究所碩士論文。
[28]趙永清,2003,「電子構裝元件可靠度與電氣特性之量測與分析」,中正大學機械工程研究所博士論文。
[29]林佳宏,2001,「TAB/ILB成型過程之數值模擬與製程參數分析之研究」,國立中正大學機械工程研究所碩士論文。
[30]葉書伸,2011,「探討COF-ILB成型過程共晶接合技術
與散熱可靠度之研究」,國立中正大學機械工程研究所博士論文。
[31]ANSYS User’s Manual. ANSYS Inc.; 2003.
[32]Y. J. Mergler, R. P. Schaake, and A. J. Huis in’t Veld, “Material Transfer of POM in Sliding Contact,” Wear, vol. 256, pp. 294-301, 2004.
[33]D. S. Liu, Y. C. Chao, and C. H. Wang “Study of Wire Bonding Looping Formation in The Electronic Packaging Process Using The Three Dimensional Finite Element Method,” Finite Elements in Analysis and Design, vol. 40, Issue 3, pp. 263-286, 2004.
[34]A.A.O.Tay, and B.C.Seah, “Finite Element Simulation of Wire Looping During Wirebonding,” Advances in Electronic Packaging, ASME, EEP-Vol. 19-1, pp. 399-406, 1997.
[35]D. S. Liu, and Y. C. Chao, “Effects of Dopant, Temperature and Strain Rate on the Mechanical Properties of Micrometer Gold Bonding Wire,” TMS Journal of Electronic Materials, vol. 32, no.3, pp. 159-165, 2003.
[36]R. Ramadoss, S. Lee, Y. C. Lee, V. M. Bright, and K. C. Gupta, “Flexible Polyimide Film Based High Isolation RF MEMS Switches Fabricated Using Printed Circuit Processing Techniques,” 18th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2005), Jan. 30 – Feb. 3, 2005, Miami, FL, pp. 179-182.
[37]S. J. Krumbein, “Metallic Electromigration Phenomena,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 11, no. 1, 1988.
[38]J. Y. Tsai, C. W. Chang, Y. C. Shieh, Y. C. Hu, and C. R. Kao, “Controlling The Microstructures From The Gold–Tin Reaction,” J. Electron. Mater., vol. 34, no. 2, pp. 182–187, 2005.
[39]C. Herzig and W. Wiemann, “Experimental Determination of The Electrostatic Driving Force in The Electromigration of Tin in Gold and Gold–Tin Alloys,” Physica Status Solidi (A) Appl. Res., vol. 26, no. 2, pp. 459–467, 1974.
[40]H. Sugimoto, T. Ohtaka, Y. Endo, H. Tanaka, and H. Okabe, “Development of The High Density Wiring 3 Layer TAB Tape,” Hitachi cable review, no. 22, pp. 42-46, 2003.
[41]Akira Chinda, Akira Matsuura, and Katsumi Suzuki, “TAB Tape Carrier with Micro Plating Bumps for Burn-In Testing Socket,” Hitachi cable review, no. 20, 2001.
[42]江國寧,2006,「微電子系統封裝基礎理論與應用技術」,滄海書局。
[43]Jog MA, Cohen IM, and Ayyaswamy PS, “Analysis and Simulation of Thermal Transients and Resultant Stresses and Strains in TAB Packaging,” Journal of Electron Packaging Trans. ASME, vol. 115, no. 1, pp. 34-38, 1993.
[44]De-Shin Liu, Shu-Shen Yeh, Chun-Teh Kao, Hung-Che Shen, Geng-Shin Shen, and Hung-Hsin Liu, “Optimization of Bonding Force, Sinking Value, and Potting Gap Size in COF Inner Lead Bonding Process,” IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 32, NO. 3, AUGUST 2009
[45]D. Kim, and C. C. Lee, “Fluxless flip-chip Sn-Au solder interconnect on thin Si wafers and Cu laminated polyimide films”, Materials Science and Engineering A, vol. 416, no. 1-2, pp. 74-79, 2006.
[46]John Boyd, “Technology Newsline”, EPSON TNL , TNL No. 24 November 2007, Epson Comp.
[47]維基百科-金, http://zh.wikipedia.org/wiki/%E9%87%91
[48]陳精一,2008,「ANSYS電腦輔助工程實務分析」,全華書局

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊