跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓宗緯
研究生(外文):Cho Tsungwei
論文名稱:基於信漏噪比之多用戶多輸入輸出湯林森賀洛希瑪預編碼技術研究
論文名稱(外文):SLNR Based Tomlinson-Harashima Precoding Techniques For MU-MIMO Communications Systems
指導教授:陳喬恩
指導教授(外文):Chen Chiaoen
口試委員:蔡佩芸劉宗憲邱茂清胡家彰
口試委員(外文):Tsai PeiyunLiu TsunghsienChiu MaochingHu Chiachang
口試日期:2012-07-10
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:信漏噪比晶格縮減幾何平均分解湯林森賀洛希瑪預編碼
外文關鍵詞:MU-MIMOSLNRTHPGMDSSLNRLRA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
多用戶多重輸入多重輸出(MIMO)下行鏈路通信系統允許一個基地台同時與數個通信站台溝通,因而提高系統的吞吐量。而影響多用戶系統錯誤率效能最為嚴重的是同通道干擾(co-channel interference, CCI),因此為了抑制同通道干擾許多預編碼方案被提出。其中以最大化信號與洩漏加雜訊比(signal-to-leakage-and-noise ratio, SLNR)的方式所設計的線性預編碼器是一種簡單且有效的方式。SLNR預編碼器的優點是有封閉解並且能將多用戶多輸入輸出系統分解成多個獨立的單用戶系統。以此技術結合湯林森-賀洛希瑪預編碼(Tomlinson-Harashima-precoding, THP)所提出的連續性信漏噪比(successive SLNR, SSLNR)可進一步改善位元錯誤率的效能。

本篇論文中我們基於SSLNR-THP的技術提出多種改良方案。首先我們提出低編碼延遲之預編碼設計,透過接收端使用匹配濾波器(matched filter)的方式,可以使得等效通道的主對角線區塊皆為對角線矩陣,得到較低的編碼延遲。其次我們利用SLNR預編碼器能將多用戶MIMO分解成多個獨立用戶處理的優點,結合幾何平均分解(geometric mean decomposition, GMD)將各個獨立的用戶個別執行GMD,以大幅度地改善錯誤率效能。另一方面由於預編碼設計結合晶格縮減(lattice reduction, LR)技術可提高MIMO系統的通訊效能,但相對的也提高了系統的複雜度。而我們將SSLNR-THP結合晶格縮減技術所提出之低複雜度晶格縮減預編碼系統,可有效改善SSLNR-THP錯誤率效能。相較於執行全維度晶格縮減的LR-THP,我們提出的方案有更低的系統複雜度。
Multi-user multiple-input-multiple-out (MU-MIMO) downlink communications have drawn great research attention recently due to its capability of providing high data-rate high reliability services. In order to effectively suppress the co-channel interference (CCI) among the mobile users, the leakage-based precoding has been proposed. The leakage-based precoding decouples the MU-MIMO system into multiple parallel single-user system and allows for closed-form solution, and therefore has relatively low computational complexity.

In this paper, we investigate a number of new leakage-based precoding design problems. In our first proposed scheme, the design allows parallel encoding for all spatial streams in the Tomlinson-Harashima precoding within the same user and hence has the advantage of very low precoding latency. In our second scheme, we combine the technique of geometric-mean-decomposition (GMD) with leakage-based precoding and then compare with the existing block-diagonal geometric-mean-decomposition (BD-GMD). In the third scheme, we introduce the lattice reduction technique to leakage-based precoding, and show great computational savings in the lattice-reduction procedure. The proposed designs have been verified and compared through extensive numerical simulations.
1緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1研究動機與目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2章節概要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2MIMO多天線系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2.1MIMO多天線系統介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2.2綠性預編碼介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3Tomlinson-Harashima 預編碼 . . . . . . . . . . . . . . . . . . . . . . 6
2.4晶格縮減輔助Tomlinson-Harashima預編碼介紹(LR-THP) . . . . . . . . . . . . 13
2.4.1多天線晶格縮減技術(LRAD). . . . . . . . . . . . . . . . . . . . . . . .13
2.4.2LR-THP預編碼. . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.5區塊對角化-幾何平均分解介紹(BD-GMD) . . . . . . . . . . . . . . . . . . . .17
2.5.1區塊對角化-幾何平均分解(BD-GMD) . . . . . . . . . . . . . . . . . . . . .18
2.5.2LR-BD-GMD-THP預編碼系統. . . . . . . . . . . . . . . . . . . . . . . .19
3基於抑制功率洩漏(Leakage)下預編碼技術. . . . . . . . . . . . . . . . . . . . .21
3.1基於 Signal-to-leakage-and-noise ratio (SLNR)之預編碼器設計. . . . . . . .21
3.2New-signal-to-leakage-and-noise ratio (NSLNR)預編碼設計. . . . . . . . .27
3.3Successive SLNR預編碼設計. . . . . . . . . . . . . . . . . . . . . . . .30
4所提出之SSLNR多用戶MIMO預編碼技術. . . . . . . . . . . . . . . . . . . . . . 33
4.1低編碼延遲之SSLNR預編碼技術. . . . . . . . . . . . . . . . . . . . . . . . 33
4.2應用GMD分解下的SSLNR-THP. . . . . . . . . . . . . . . . . . . . . . . . .37
4.2.1ZF-SSLNR-THP-GMD預編碼系統. . . . . . . . . . . . . . . . . . . . . . .37
4.2.MMSE-SSLNR-THP-GMD預編碼系統. . . . . . . . . . . . . . . . . . . . . .39
4.3基於SSLNR下低複雜度LR預編碼技術. . . . . . . . . . . . . . . . . . . . . . 42
4.3.1ZF-LR-THP-GMD預編碼系統. . . . . . . . . . . . . . . . . . . . . . . .42
4.3.2MMSE-LR-THP-GMD預編碼系統. . . . . . . . . . . . . . . . . . . . . . .45
5電腦模擬與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
5.1基礎預編碼系統之模擬比較. . . . . . . . . . . . . . . . . . . . . . . . . .47
5.2多用戶MIMO預編碼系統之模擬比較. . . . . . . . . . . . . . . . . . . . . . .49
5.3基於Leakage技術預編碼系統之模擬比較. . . . . . . . . . . . . . . . . . . . .51
5.4低編碼延遲之SSLNR預編碼系統之模擬比較. . . . . . . . . . . . . . . . . . . .53
5.5應用GMD分解下SSLNR編碼系統之模擬比較. . . . . . . . . . . . . . . . . . . .55
5.6基於SSLNR低複雜度LR預編碼系統之模擬比較. . . . . . . . . . . . . . . . . . .57
6結論與未來工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
6.1結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

[1] M. Sadek, A. Tarighat, and A. H. Sayed, “A leakage-based precoding scheme for downlink multi-user MIMO channels,” IEEE Trans. Wireless Commun., vol. 6, no.5, pp. 1711-1721, May 2007.

[2] X. Zhang, C. He, and L. Jiang, “Successive SLNR based precoding for downlink multi-user MIMO systems,” in Proc. IEEE Int. Conf. Commun. June. 2011.

[3] S. Lin,W.W. L. Ho, and Y. C. Liang, “Block diagonal geometric mean decomposition(BD-GMD) for MIMO broadcast channels,” IEEE Trans. Wireless Commun., vol. 7,no. 7, pp. 2778-2789, Jul. 2008.

[4] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A vector-perturbation technique for near-capacity multiantenna multiuser communicationPart I: channel inversion and regularization,” IEEE Trans. Commun., vol. 53, no. 1, Jan. 2005.

[5] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A vector-perturbation technique for near-capacity multiantenna multiuser communicationPart II: perturbation,”IEEE Trans. Commun., vol. 53, no. 3, pp. 537-544, Mar. 2005.

[6] C. Windpassinger, R. F. H. Fisher, T. Vencel, and J. B. Huber, “Precoding in multiantenna
and multiuser communications,” IEEE Trans.Wireless Commun., vol. 3, no.4, pp. 1305-1316, July 2004.

[7] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal. Processing., vol. 52, no. 2, pp. 461 471, Feb. 2004.

[8] F. Liu, L. Jiang, C. He, “Advanced joint transceiver design for block-diagonal geometric-mean-decomposition-based multiuser MIMO systems,” Proc. IEEE Vehicular Technology Conf. (VTC), vol. 59, Feb. 2010.

[9] A. K. Lenstra, H.W. Lenstra, Jr., and L. Lovász, “Factoring polynomials with rational coefficients,” Math. Ann., vol. 261, pp. 515-534, Dec. 1982.

[10] M. Joham, J. Brehmer, and W. Utschick, “MMSE approaches to multiuser spatiotemporal Tomlinson-Harashima precoding,” Proc. ITG SCC 04, Erlangen, Germany, pp. 387 394, Jan. 2004.

[11] J. Liu, W. A. Kizymie`n, “Improved Tomlinson-Harashima precoding for the downlink for multi-user MIMO systems,” Canadian Journal of Electrical and Computer Engineering, vol. 45, no. 10, pp. 1467-1474, Oct. 1997.

[12] C. Stierstorfer, and R. F. H. Fischer, “Lattice-reduction-aided Tomlinson-Harashima precoding for point-to-multipoint transmission,” AEU - International Journal of Electronics and Communications, vol. 60, pp. 328-330, April 2006.

[13] P. Cheng, M. Tao, and W. Zhang, “A new SLNR-based linear precoding for downlink multi-user multi-stream MIMO systems,” IEEE Commun. Lett., vol. 14, pp. 1008 1010, Nov. 2010.

[14] F. Liu, L. Jiang, C. He, “Low complexity lattice reduction aided MMSE precoding design for MIMO systems,” Second International Conference on Communications and Networking in China, pp.498-502, Aug 2007.

[15] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming problem with individual SINR constraints,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp.
18-28, Jan. 2004

[16] A. Bourdoux and N. Khaled, “Joint TX-RX optimisation for MIMO SDMA based on a null-space constraint,” in Proc. IEEE 56th Vehicular Technology Conference, Sept. 2002, pp. 171-174.

[17] B. B. Hassibi, “An efficient square-root algorithm for BLAST,” Bell Labs Technical Memorandum, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文