跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李冠毅
研究生(外文):Li, Guanyi
論文名稱:Set-Membership適應性濾波器應用於虛擬多重輸入多重輸出之訊號偵測
論文名稱(外文):Signal Detection Using Set-Membership Adaptive Filter for Virtual MIMO based Wireless Sensor Networks
指導教授:胡家彰
指導教授(外文):Hu, Chiachang
口試委員:胡家彰劉宗憲陳喬恩張名先
口試委員(外文):Hu, ChiachangLiu, TsunghsienChen, ChiaoenChang, Mingxian
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:68
中文關鍵詞:多重輸入多重輸出無線感測網路虛擬多重輸入多重輸出適應性濾波器SMF
外文關鍵詞:MIMOWSNsVMIMOAdaptive filterSet-membership filtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
多重輸入多重輸出(multiple-input multiple-output, MIMO) 通訊系統,即為在傳送端與接收端使用多根天線進行訊號傳輸。然而在無線感測網路(wireless sensor networks, WSNs)中,感測網路的節點由於體積較小並且每個節點只裝置一根天線,因此感測網路中各個節點之間合作式的交換資料並且把資料傳給資料收集器,形成一個虛擬多重輸入多重輸出(virtual multiple-input multiple-output, VMIMO)的系統架構為近年來討論的重點。為了改善NLMS (Normalized Least Mean Square)演算法的收斂問題及降低RLS (Recursive Least Square)適應性演算法的複雜度,本論文使用SMF(Set-Membership Filtering)的架構設計一組VMIMO系統的接收機,把SMF的架構應用到NLMS和RLS演算法來做比較,模擬結果顯示當採用SMF的架構來做演算法的更新時,可以有效的降低複雜度並且達到優異的效能。
In multiple-input multiple-output (MIMO) communication systems, the transmitter and receiver use multiple antennas to decrease the error rate of the transmitted signals effectively. However, in wireless sensor networks (WSNs), the nodes in a sensor network have small size and each node is equipped an antenna. A virtual multiple-input multiple-output (VMIMO) architecture is proposed recently, which allows cooperatively data exchange among each node in a sensor network and then transmits data to a data gathering node (DGN). We consider to apply the adaptive filter to design a VMIMO receiver. In order to improve the convergence problem of the normalized least mean square (NLMS) and reduce the complexity of the recursive least square (RLS), the method of set-membership filtering (SMF) is applied to the NLMS, and RLS adaptive algorithms. Finally, simulation results show that the SMF is able to reduce the computational complexity effectively and achieve a better bit-error-rate (BER) performance.
中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VI
第一章 簡介 1
1.1 前言 1
1.2 研究動機 3
1.3 論文架構 4
第二章 虛擬多重輸入輸出系統 5
2.1 多重輸入輸出技術 5
2.1.1 多天線系統 6
2.2 合作式通訊基本概念 10
2.3 虛擬多重輸入輸出技術應用於無線感測網路 12
2.3.1 無線感測網路 12
2.3.2 系統模型 16
第三章 適應性接收器 20
3.1 MMSE接收器 20
3.2 NLMS演算法 23
3.3 RLS演算法 26
3.4 AP演算法 29
第四章 SMF 適應性接收器 32
4.1 SMF基本架構 32
4.2 SM-NLMS演算法 35
4.3 BEACON演算法 37
4.4 時變估測誤差上限值 41
第五章 電腦模擬與分析 43
5.1 適應性演算法收斂狀況 44
5.2 BER系統效能分析. 51
5.3 複雜度分析. 52
第六章 結論與展望 58
參考文獻 59

[1]G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wirel. Personal Commun., vol. 6, no. 3, pp. 311-335, Mar. 1998.
[2]R. S. Blum, J. H. Winters, and N. R. Sollenberger, “On the capacity of cellular systems with MIMO,” IEEE Commun. Lett., vol. 6, no. 6, pp. 242-244, June 2002.
[3]A. J. Paulraj, R. U. Nabar, and D. A. Gore, Introduction to Space-Time Wireless Communications, Cambridge, U.K.: Cambridge Univ. Press, 2003.
[4]S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[5]Y. Gong and K. B. Letaief, “Low complexity channel estimation for space–time coded wideband OFDM systems.” IEEE Trans. Wirel. Commun., vol. 2, no. 5, pp. 876-882, Sep. 2003.
[6]W. G. Jeon, K. H. Paik, and Y. S. Cho, “An efficient channel estimation technique for OFDM systems with transmitter diversity,” IEICE Trans. Commun., vol. E84-B, no. 4, pp. 967-974, April 2001.
[7]P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” International Symposium on Signals, Systems, and Electronics, pp.295-300, Sep.1998.
[8]S. K. Jayaweera, “Virtual MIMO-based cooperative communication for energy-constrained wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 5, no. 5, pp. 984-989, May 2006.
[9]S. K. Jayaweera, M. L. Chebolu, and R. K. Donapati, “Signal-processing-aided distributed compression in virtual MIMO-based wireless sensor networks,” IEEE Trans. Veh. Technol., vol. 56, no. 5, pp.2630-2640, Sep. 2007.
[10]Qi Qu, L. B. Milstein, and D. R. Vaman, “Cooperative and constrained MIMO communications in wireless Ad Hoc/Sensor networks,” IEEE Trans. Wireless Commun., vol. 9, no. 10, pp.3120-3129, Oct. 2010.
[11]S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks,” IEEE J. Select. Areas. Commun., vol. 22, no. 6, pp. 1089–1098, Aug. 2004.
[12]S. Haykin, Adaptive Filter Theory. Fourth ed. Upper Saddle River, NJ: Prentice Hall 2002.
[13]S. Gollamudi, S. Nagaraj, S. Kapoor, and Y. F. Huang, “Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size,” IEEE Signal Process. Lett., vol. 5, no. 5, pp. 111–114, May 1998.
[14]T. Wang, R. C. de Lamare, and P. D. Mitchell, “Low-complexity Set-Membership channel estimation for cooperative wireless sensor networks,” IEEE Trans. Veh. Technol., vol. 60, no. 6, pp. 2594-2607, July 2011.
[15]R. C. de Lamare and P. S. R. Diniz, “Set-Membership adaptive algorithms based on time-varying error bounds for CDMA interference suppression,” IEEE Trans. Veh. Technol., vol. 58, no. 2, pp. 644–654, Feb. 2009.
[16]S. Nagaraj, S. Gollamudi, S. Kapoor, and Y. F. Huang, “BEACON: An adaptive set-membership filtering technique with sparse updates,” IEEE Trans. Signal Process., vol. 47, no. 11, pp. 2928–2941, Nov. 1999.
[17]S. Dasgupta and Y. F. Huang, “Asymptotically convergent modified recursive least-squares with data dependent updating and forgetting factor,” in Proc. IEEE Conf. Decision Control, Dec. 1985, pp. 1067–1071.
[18]S. Nagaraj, S. Gollamudi, S. Kapoor, and Y. F. Huang, “Bounded error estimation: Set-theoretic and least-squares formulations,” Proc. Conf. Inform. Sci. Syst. Baltimore, MD, Johns Hopkins Univ., Mar. 1997.
[19]L. Guo and Y. F. Huang, “Set-membership adaptive filtering with parameter-dependent error bound tuning,” in Proc. IEEE ICASSP, Mar. 2005, pp. iv/369–iv/372.
[20]I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp.102 -114, Aug. 2002.
[21]龔政賢,「天線選擇技術在多重輸入輸出通信系統之能量效益」,中正大學通訊工程研究所碩士論文,民國99年6月。
[22]J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2000.
[23]S. Werner and P. S. R. Diniz, “Set-membership affine projection algorithm,”IEEE Signal Process. Lett., vol. 8, no. 8, pp. 231–235, Aug. 2001.
[24]R. C. de Lamare and R. Sampaio-Neto, “Minimum mean squared error iterative successive parallel arbitrated decision feedback detectors for DSCDMA systems,” IEEE Trans. Commun., vol. 56, no. 5, pp. 778–789, May 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊